4poram
Axis angle representation

$$
\begin{aligned}
& (\theta, \hat{k}) \longrightarrow R(\theta, \hat{k}) \\
& 3-\text { powawn }\left[\begin{array}{c}
k=\theta \hat{k} \\
\lim _{\theta \rightarrow 0} k=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
\end{array} \quad\|k\| \leqslant \pi\right. \\
& (\theta, \hat{k}) \longrightarrow R(\theta, \hat{k})
\end{aligned}
$$

Rodrigues formula

$$
\begin{aligned}
\hat{\omega} & =\hat{k} \times \underline{p} \\
\underline{\omega} & =\hat{k} \times \underline{p}
\end{aligned} \left\lvert\, \begin{aligned}
p_{\perp} & =\underline{\omega} \times \hat{k}=-\hat{k} \times \underline{\omega} \\
& =-\hat{k} \times(\hat{k} \times \underline{p})
\end{aligned}\right.
$$

$\left\|\underline{p}_{1}\right\|=1 \phi \mid \sin \phi$ $\|\underline{\omega}\|=|\underline{p}| \sin \phi$ $\left\|p_{1}\right\|=\|\underline{\omega}\|$

$$
a \times b=\lfloor a\rfloor_{\times} b
$$

$$
(a)_{x}=\left[\begin{array}{l}
a_{x} \\
a_{y} \\
a_{z}
\end{array}\right]_{x}=\left[\begin{array}{ccc}
0 & -a_{2} & a_{y} \\
a_{2} & 0 & -a_{x} \\
-a_{y} & a_{x} & 0
\end{array}\right]\left[\begin{array}{l}
b_{x} \\
b_{4} \\
b_{2}
\end{array}\right]
$$

$$
\begin{aligned}
& a \times b \\
& \stackrel{\underset{a x}{b}}{=}\left|\begin{array}{ccc}
\hat{i} & -\hat{j} & \hat{k} \\
a_{x} & a_{1} & a_{2} \\
b_{x} & b_{4} & b_{2}
\end{array}\right| \\
& =\hat{i}\left(a_{y} b_{z}-a_{z} b_{y}\right) \hat{-j}\left(a_{x} b_{z}-a_{z} b_{x}\right)+\hat{k}\left(a_{x} b_{y}-b_{x} a_{y}\right) \\
& p_{\text {not }}=-\left\lfloor\left.\hat{k}\right|_{x}\left(\lfloor\hat{k}]_{x} p\right) \cos \theta+[\hat{k}]_{x} p \sin \theta\right. \\
& \lfloor\hat{k}\rfloor_{x}=k \\
& =-k^{2} \underline{p} \cos \theta+k \underline{p} \sin \theta \\
& p=p_{11}+p_{1} \Rightarrow p_{11}=p-p_{1}=p-\left(-k^{2} \underline{p}\right)=p+k^{2} p \\
& p_{\text {rot }}=p_{11}+p_{+ \text {not }}=\underline{p}+k^{2} \underline{p}_{-}-k^{2} \underline{p} \cos \theta+k \underline{p} \sin \theta \\
& p_{\text {rot }}=\underline{p}+k \underline{p} \sin \theta+(1-\cos \theta) k^{2} \underline{p} \\
& =\overline{[}\left[I_{3+3}+K \sin \theta+(1-\cos \theta) R^{2}\right] P_{D}
\end{aligned}
$$

$$
\begin{gathered}
p_{\text {tot }}=R(\theta, \hat{k}) \underline{p} \quad R(\theta, \tilde{k})={\underset{-3}{363}}^{p}+k_{3 \times 3} \sin \theta+(1-\cos \theta) k_{3 x=3}^{2} \\
k=\left[\begin{array}{ccc}
0 & -k_{2} & k_{y} \\
k_{2} & 0 & -k_{x} \\
-k_{y} & k_{x} & 0
\end{array}\right]
\end{gathered}
$$

Rotation matrix \rightarrow axis -angle

$$
\theta=0
$$

$$
v=\text { eigen vector }
$$

Eigen vectors / values of a Matrix m
cores. to $m \in \mathbb{R}^{n \times m}$

$$
\lambda=1
$$ solutions $\quad M \underline{v}=\lambda \underline{v}$

$\lambda_{i} \cdots \lambda_{n} \quad$ Eigen values $\in \mathbb{R}$
$v_{i} \ldots v_{n} \quad$ "vectors $\in \mathbb{R}^{n+1}$

$$
M=\sum_{i} \lambda_{i} \underline{v}_{i} \underline{v}_{i}^{\top}
$$

$$
\begin{aligned}
& \hat{k}=\left[\begin{array}{l}
k_{x} \\
k_{y} \\
k_{2}
\end{array}\right]=\left[\begin{array}{ll}
r_{32}-r_{23} \\
r_{13}-r_{31} \\
r_{21}-r_{12}
\end{array}\right] /(2 \sin \theta) \quad \theta \neq 0, \pi \\
& \Rightarrow \hat{k}=\left(\sum_{0}\right)_{1} \theta=0 \\
& R(\theta, \hat{k}) \vartheta=-v \\
& \theta=\pi \quad R=I+K^{2} \\
& K_{x}= \pm \sqrt{\left(K_{11}+1\right) / 2} \\
& k_{4}= \pm \sqrt{\left(r_{22}+1\right) / 2} \\
& k_{2}= \pm \sqrt{\left(r_{33}+1\right) /_{2}}
\end{aligned}
$$

$$
\begin{aligned}
& R=\left[\begin{array}{lll}
r_{11} & r_{12} & r_{13} \\
r_{21} & r_{22} & r_{23} \\
r_{31} & r_{32} & r_{33}
\end{array}\right]=\left[I+k \sin \theta+(l-\cos \theta) k^{2}\right] \\
& \theta=\cos ^{-1}\left(\frac{\operatorname{tr}(R)-1}{2}\right) \quad \operatorname{tr}(M)=\left[\begin{array}{lll}
m_{1 i} & & \\
m_{22} & \cdots \\
- & \ddots m_{n k}
\end{array}\right] \\
& \operatorname{tr}\left(A B C_{1}\right)=\operatorname{tr}(B C A)=\operatorname{tr}(C A B)=\sum_{i=1}^{n} M_{i i} \\
& v^{\top} V E \mid R^{n+1}\left(R^{n+n} \quad \operatorname{tr}\left(\underline{v} v^{\top}\right)=\operatorname{tr}\left(v^{\top} v\right)\right.
\end{aligned}
$$

