pendulum
run_pendulum_control_cbf_clf = partial(run_pendulum_experiment, controller_class=PendulumCBFCLFDirect, plotfile='data/plots/run_pendulum_control_cbf_clf{suffix}.pdf', theta0=5 * math.pi / 12, tau=0.002, numSteps=15000)
module-attribute
Run pendulum with a safe CLF-CBF controller.
run_pendulum_control_online_learning = partial(run_pendulum_experiment, plotfile='data/plots/run_pendulum_control_online_learning{suffix}.pdf', controller_class=ControlPendulumCBFLearned, numSteps=250, theta0=7 * math.pi / 12, tau=0.002, dtype=torch.float64)
module-attribute
Run save pendulum control while learning the parameters online
run_pendulum_control_trival = partial(run_pendulum_experiment, controller_class=ControlTrivial, plotfile='data/plots/run_pendulum_control_trival{suffix}.pdf')
module-attribute
Run pendulum with a trivial controller.
ControlCBFCLFGroundTruth
Bases: ControlPendulumCBFLearned
Controller that avoids learning but uses the ground truth model
Source code in bayes_cbf/pendulum.py
1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 |
|
control_QP_cbf_clf(x, ctrl_aff_constraints, constraint_margin_weights=[])
Parameters:
Name | Type | Description | Default |
---|---|---|---|
A_cbfs |
A tuple of CBF functions |
required | |
b_cbfs |
A tuple of CBF functions |
required | |
constraint_margin_weights |
Add a margin constant to the constraint that is maximized. |
[]
|
Source code in bayes_cbf/pendulum.py
800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 |
|