Homework 3

Max marks: 100

Due on September 30, 2021, 12:00 noon, in the beginning class. Please submit in paper in class. It is easier to grade on paper. Please submit on brightspace for a digital backup, just in case.

Row	x_1	x_2	x_3	f
0	0	0	0	0
1	0	0	1	1
2	0	1	0	1
3	0	1	1	0
4	1	0	0	1
5	1	0	1	0
6	1	1	0	0
7	1	1	1	1

Table 1: Truth table for a 3-way light switch

Problem 1 If the SOP form for $\bar{f} = AB\bar{C} + \bar{A}\bar{B}$, then give the POS form for f. [10 marks]

Problem 2 Use DeMorgan's Theorem to find fif $\bar{f} = (A + \bar{B}C)D + EF$. [10 marks]

Problem 3 Implement the function in Table 1 using only NAND gates. [10 marks]

Problem 4 Implement the function in Table 1 using only NOR gates. [10 marks]

Problem 5 Find the minimum-cost SOP and POS forms for the function $f(x_1, x_2, x_3) = m(1, 3, 4, 5)$. Chose the minimum-cost expression by comparing POS and SOP forms. [10 marks]

Problem 6 Find the minimum-cost SOP and POS forms for the function $f(x_1, x_2, x_3) = \sum m(1, 5, 7) + D(2, 4)$. [10 marks]

Problem 7 Find the minimum-cost SOP and POS forms for the function $f(x_1, x_2, x_3, x_4) = \prod M(1, 2, 4, 5, 7, 8, 9, 10, 12, 14, 15)$. Chose the minimum-cost expression by comparing POS and SOP forms. [10 marks] **Problem 8** Find the minimum-cost SOP and POS forms for the function $f(x_1, x_2, x_3, x_4) =$ $\sum m(2, 8, 9, 12, 15) + D(1, 3, 6, 7)$. Chose the minimum-cost expression by comparing POS and SOP forms. [10 marks]

Problem 9 Derive a minimum-cost realization of the four-variable function that is equal to 1 if exactly two or exactly three of its variables are equal to 1; otherwise it is equal to 0. [10 marks]

Problem 10 Find the minimum-cost SOP and POS forms for the function $f(x_1,...,x_5) = \sum m(1,3,4,6,8,9,11,13,14,16,19,20,21,22,24,25) + D(5,7,12,15,17,23)$. Chose the minimum-cost expression by comparing POS and SOP forms. [10 marks]