
ECE275: Sequential Logic Circuits

Lab 2: Introduction to SystemVerilog and Multiplexers

Zafaryab Haider zafaryab.haider@maine.edu
Shihab Uddin Ahamad shihab.ahamad@maine.edu

September 12, 2022

Contents

1 Lab Overview 2

2 Part 1: Graphical Section 2
2.1 Create a New Project and Schematic . 2
2.2 Multiplexer Overview . 3
2.3 Create the Multiplexer . 3
2.4 Label Pins and Set Pin Assignments . 5
2.5 Run Compilation and Program the FPGA . 5

3 Part 2: SystemVerilog 6
3.1 Basics of SystemVerilog . 6
3.2 Writing Your Own SystemVerilog . 7
3.3 Compare the Synthesized Logic Gates . 7

4 Part 3: Extend the multiplexer 9

5 Questions 9
5.1 Question 1 . 9
5.2 Question 2 . 9
5.3 Question 3 . 10
5.4 Question 4 . 10
5.5 Question 5 . 10

1

mailto:zafaryab.haider@maine.edu
mailto:shihab.ahamad@maine.edu

1 Lab Overview

The goal of this lab will be to learn the basics of the FPGA boards, and of SystemVerilog by creating
multiplexers.

You will need to:

1. Create a multiplexer using the GUI schematic functionality in Quartus

2. Create a multiplexer with SystemVerilog only using the = ! ∼ | & operators

3. Compare the gates synthesized from your SystemVerilog code by Quartus to the schematic design

4. Extend the multiplexer to accept a vector of inputs

2 Part 1: Graphical Section

2.1 Create a New Project and Schematic

Create a new Quartus project in the same method as the previous lab, with a name specific to this section
of the lab. Something along the lines of lab2part1. Make sure to select the correct FPGA version. Refer to
the Lab 1 document for the steps if you do not remember. In this project DO NOT create a SystemVerilog
file. We will instead be creating a Block Diagram/Schematic File as shown in Figure 1.

Figure 1: Create a new Block Diagram/Schematic File

2

2.2 Multiplexer Overview

A multiplexer is in essence a digital selector. One of the inputs allows you to select which of the other inputs
would be moved to the output. A simple multiplexer (as we are building in this section) would have 3 input
bits. In our case we will label them as s, x, and y. s would be our selector bit, where if it is a 0, then the
value of x is present on the output (m=x). If it is a 1, then the value of y is present on the output (m=y).
The symbol for a multiplexer is shown in Figure 2 and represents the multiplexer you will be building today,
with an output m.

m

s

x

y 1

0

Figure 2: Simple Multiplexer

This can also be represented by the digital logic circuit shown in Figure 3

Y ∗ SY

S

S̄
X ∗ S̄

X

(Y ∗ S) + (X ∗ S̄)
•

•

•

•

•

Figure 3: Simple Multiplexer Logic Diagram

2.3 Create the Multiplexer

The schematic file you created in the previous step should be open. Go ahead and save it right away. You
will need to save it as name of your top level, so something like lab2part1top.bdf. .bdf files are the Block
Diagram/Schematic files, while .v represents SystemVerilog files.

Next, use the pin tool at the top of the schematic (shown in Figure 4) to create 3 input pins and one
output pin. You will need to use the arrow to the right of the box to change the selection to output to create
the output pin. These represent pins x, y, s, and m for the multiplexer. Generally it is a good idea to create
your inputs on the left and outputs on the right so logic flows intuitively from left to right.

3

Figure 4: Quartus Schematic Pin Tool

Next, create the logic elements you will need to build the multiplexer from Figure 3, such as the 2 AND
gates, 1 OR gate, and 1 NOT. These symbols are under the symbol tool to the left of the pin tool. Make
sure to select the logic folder in the symbol tool to find these as shown in Figure 5.

4

Figure 5: Select the Logic Elements from the Symbol Library

Next attach wires to complete the logic. To start a wire you just need to click and drag from any of the pins
on any of the inputs/output/gates.

2.4 Label Pins and Set Pin Assignments

You should now have a graphical logic diagram that represents a multiplexer. The last step is to label the
pins and then assign them to real world devices (switches for the inputs, LED for the output). The best idea
for the pin labeling is to use the pin names from the .qsf files, so you can copy and paste pin assignments
from there. Open the qsf to verify these names, but the switches should be labeled as SW[0], SW[1], etc.
and the green LEDs would be LEDG[0], LEDG[1], etc. For this lab use SW[0] as s, SW[1] as x, and SW[2]
as y. LEDG[0] will represent the output m. Make sure you understand this portion, as these pin addresses
will not be explicitly given to you in the future. If you do not understand these names and how they relate
to the .qsf files, ask a TA or the instructor.

After you label the pins select the relevant lines from the .qsf file and paste them into the TCL console
in Quartus to assign the pins.

2.5 Run Compilation and Program the FPGA

At this point you should be able to run compilation and then program to the board as you did in Lab 1. If
you run into errors during compilation please try to read through the error messages and diagnose the error
yourself before asking a TA.

5

Figure 6: Creating a new SystemVerilog HDL file

Create a truth table of x, y, s, and m from manipulating the switches and
have it checked off by a TA to complete this section of the lab

3 Part 2: SystemVerilog

3.1 Basics of SystemVerilog

In Lab 1, we used Verilog. From this Lab onwards, we will use SystemVerilog, which is, loosely speaking, a
more modern version of Verilog.

From this lab onwards, when creating a new file, you will choose SystemVerilog HDL (Hardware Descrip-
tion Language) instead of Verilog HDL (See Fig 6).

The first section was meant to help you see the connection between what you program in SystemVerilog,
and the digital logic representation. You will now be creating the same multiplexer you created graphically,
but now by utilizing SystemVerilog. Below is the code from last week’s lab. We will take a closer look at it
today, so you can modify it to create your multiplexer.

module lab1top (
input [9 : 0] SW ,
output [9 : 0] LEDG

) ;
a s s i gn LEDG [9 : 0] = SW [9 : 0] ;

endmodule

The first line ”module lab1top(” is similar, but not identical to a C function. You will learn more about
the differences later, but for now just see it as the module that has your top level name will be the mod-
ule that runs on your FPGA. My top level was lab1top, so make sure you modify that to match your top level.

6

The next part inside the the parenthesis, ”input [9:0] SW, output [9:0] LEDG); signifies the variables to
be used in the module. You can just name the variables in the parenthesis without giving a size or type, as
long as you specify those in the module. With this being a simple module, I just designated the switches as
inputs, and the LEDs as outputs right in the parenthesis. The [9:0] part of the variable declaration indicates
to create the variables SW[0], SW[1], SW[2],...,SW[9]. These can be utilized similar to C arrays where you
can assign to a range SW[5:3] or to a single value SW[3]. You can probably guess that the input keyword
signifies those are either inputs from other digital logic, or real world input devices such as switches. Outputs
signify being output to other digital logic, or tied to real world outputs such as LEDs. Other options exist,
such as wire or register, that would represent a wire between logic, or a register to hold a value.

The next part ”assign LEDG[9:0] = SW[9:0];” is taking the values of the switches and assigning them
to the LEDs. In this case, LEDG[0] is controlled by SW[0], LEDG[1] is tied to SW[1] and so on. The assign
statement creates connections between variables similar to how you drew the wires in part 1. The example
only utilizes a simple equals, but SystemVerilog supports many math operators such as +,-,*,/, etc. We will
be utilizing the more basic boolean logic operators & (AND), | (OR), ! (NOT). Use parenthesis to specify
order of operations.

3.2 Writing Your Own SystemVerilog

Start the section off by creating a new project, with a blank SystemVerilog file. You will be modifying the
SystemVerilog code in the previous section to create the multiplexer from Figure 3. The first thing would
be to change the inputs/outputs to match our case. The lab would still work if you left them as they are,
but it is bad practice to create more variables than you need. We are only using SW[0], SW[1], SW[2], and
LEDG[0].

Important Note

SystemVerilog will not let you create a variable as a single bit vector. So while input [1:0] LEDG
would create a two bit wide vector for LEDG (LEDG[0] and LEDG[1]), input [0] LEDG would give
you an error. You would instead just do input LEDG. The issue with this is the variable name would
no longer match what is in the .qsf file for that pin assignment. This leaves two options. You can
manually assign the LEDG variable in the pin planner, or you can modify the line from the .qsf file
for LEDG[0] to just LEDG.

Now change the assign statement to match the logic you need for the multiplexer. You can see this at
the far right of Figure 3. The equation in SystemVerilog would be: ”assign m = (! s & x) | (s & y);” Replace
the assign statement in the example SystemVerilog from Lab 1 with this assign statement, and then change
the variable names (s,x,y,m) to match the proper input/output addresses. For example, s is SW[0]. After
you replace the variables properly, run compilation and then program FPGA. Check that the results for this
section match your truth table from the first part.

3.3 Compare the Synthesized Logic Gates

The last step for this section is to compare the synthesized logic gates from your SystemVerilog code to
how you would design the multiplexer with logic gates. After you do compilation, a compilation list should
appear on the left. Navigate to the RTL Viewer Option and double click. This is shown in Figure 7, and
the created logic is shown in Figure 8

7

Figure 7: Select the RTL Viewer in the Compilation Window

Figure 8: Digital Logic Created by the SystemVerilog Code

8

4 Part 3: Extend the multiplexer

For this section, create another new project and blank SystemVerilog file. It would be a good idea to copy
and paste in your code from the last section, as you can modify it to make this section easier.

m[3 : 0]

s[0]

x[3 : 0]

y[3 : 0] 1

0

Figure 9: Extended Multiplexer

In the previous part you created a simple multiplexer with a single bit switch, and 2 single bit inputs.
For this portion you will need to create the inputs as 4 bit wide vectors, as well as the output being 4 bits
wide. This will show you how to manipulate vectors in SystemVerilog, as it is the most useful basic tool to
reduce code complexity. You have already seen how to create input and output vectors from the code from
the last section (SW[3:0] would be a 4 bit wide vector).

The easiest way to accomplish this section is to just utilize multiple assign statements, and assign each
output LED using a very similar equation to the assign line from the previous section. You will just need
to update each assign statement to look at the correct location in the vector. So if in the last section the
assign line was ”assign m = (!s & x) | (s & y);”, and you replaced s, x, and y with the corresponding SW[X],
m with the corresponding LEDG[X] value, in this section if you create multiple lines of the form ”assign m
= (!s & x) | (s & y);” you can update each line with different SW and LEDG values. With this method you
would need 4 assign lines.

There are other ways to accomplish the same result to complete this lab, and you are welcome to try a
different method if you would like. You just must not use a prebuilt multiplexer module, you must use
SystemVerilog code, and in your SystemVerilog you cannot use if statements, or math outside of & (AND),
| (OR), ! (logical NOT)/∼ (bitwise NOT). Most other methods would also likely require you to create a
temporary storage variable. You can do this by adding ”wire [1:0] VARNAME” to the module variable
declaration section. You would replace the [1:0] with the size of the vector you need. You can then use it as
a storage variable, but it acts in a similar manner to a wire in-between logic gates.

5 Questions

Answer these questions for a TA at the end of class to complete the lab.

5.1 Question 1

Why is it helpful to use SW[0], SW[1], etc as the variable names instead of using names like s, x, y?

5.2 Question 2

What would the SystemVerilog line ”assign LEDG[7:4]=SW[3:0]” accomplish?

9

5.3 Question 3

In the following code section, which assign line will be executed first when running on the FPGA?

module lab1top(

input [9:0] SW,

output [9:0] LEDG

);

assign LEDG[0] = SW[9];

assign LEDG[1] = SW[8];

assign LEDG[2] = SW[7];

endmodule

5.4 Question 4

What advantages can you envision for utilizing SystemVerilog vs the schematic method for designing digital
logic for the FPGA?

5.5 Question 5

Use the IEEE Standard (See section 11.4.7 and 11.4.8) as a reference for this question: https://vikasdhiman.
info/ECE275-Sequential-Logic/lab_pdfs/1800-2017.pdf

What would be the difference between the following SystemVerilog assign statements:

assign LEDG[9:0]=!SW[9:0];
assign LEDG[9:0]=∼SW[9:0];

10

https://vikasdhiman.info/ECE275-Sequential-Logic/lab_pdfs/1800-2017.pdf
https://vikasdhiman.info/ECE275-Sequential-Logic/lab_pdfs/1800-2017.pdf

	Lab Overview
	Part 1: Graphical Section
	Create a New Project and Schematic
	Multiplexer Overview
	Create the Multiplexer
	Label Pins and Set Pin Assignments
	Run Compilation and Program the FPGA

	Part 2: SystemVerilog
	Basics of SystemVerilog
	Writing Your Own SystemVerilog
	Compare the Synthesized Logic Gates

	Part 3: Extend the multiplexer
	Questions
	Question 1
	Question 2
	Question 3
	Question 4
	Question 5

