
ECE275: Lab 5 Prelab

Verilog Functionality Beyond Simple Gates

Pascal Francis-Mezger

October 4, 2021

Assignment Overview

So far for labs we have focused on recreating combinational logic by using direct
boolean equations from your boolean algebra with the AND, OR, and NOT op-
erators. This has been to help you solidify that a hardware description language
is used to programmatically create a representation of the hardware.

Verilog also has many higher level features that can help you quickly create
more advanced hardware designs. Keep in mind when utilizing these features,
the synthesizer is still going to create your hardware on the FPGA using simple
logic constructs (AND, OR, NOT, etc). So while these tools are powerful they
also make it easy to create designs that are very wasteful of hardware.

The goal of this assignment is for you to learn about the more complex fea-
tures available and how to utilize them in Verilog code. In the lab you will look
at the synthesized logic from these designs, and compare the hardware to your
expectations.

1



Assignment

Each question asks you to utilize a simple Verilog feature in code. You do
not need to write a full Verilog program with top level for each question. If
the question asks for a module, create a working module implementation using
the feature. Otherwise, a code ”snippet” just showing the relevant lines of
programming is adequate.

Number Representation

Sometimes it is necessary to represent a numeric value in Verilog. It is impor-
tant when doing so to also specify how many bits should represent that value,
especially when it is a signed value (can be positive or negative). Read section
3.5: Number Representation at https://verilogguide.readthedocs.io/en/

latest/verilog/datatype.html.

Write Verilog code to create a 4 bit wire variable X, and a 6 bit wire
variable Y. Assign X the binary value 0101. Assign Y the decimal
value 8.

Arithmetic

In Lab 4 you created a 4 bit adder by utilizing full adders in a ripple configura-
tion. Instead, we could have made this much simpler by just using the addition
operator, +.

Modify your 4 bit adder module from lab 4 to use the + operator
instead of instantiating your full adder.

Concatenation and Replication

Concatenation is useful to combine values into a single vector in their relevant
position. For example, if we want to combine two separate 4 bit values to
represent one 8 bit value. Utilize 3.8.5 from the same website in the number
representation section to answer the following question.

Utilize concatenation and replication to complete the following code
to assign C[9:0] the pattern AABBA

module LED_Pattern(

input [1:0] A,

input [1:0] B,

output [9:0] C

);

assign C = //YOUR CODE HERE

endmodule

2

https://verilogguide.readthedocs.io/en/latest/verilog/datatype.html
https://verilogguide.readthedocs.io/en/latest/verilog/datatype.html


Conditional Operator

Utilize the same website from the number representation question. Read section
3.8.6 on conditional operators.

Modify your 4 bit multiplexer module from Lab 2 to instead use
the conditional operator ?. This should only require 1 assign line.

Always Block and Sequential Logic

The following URL, https://verilogguide.readthedocs.io/en/latest/verilog/
procedure.html is a great description of the differences in implementing com-
binational logic versus sequential logic in Verilog. Read sections 4.2-4.5 the
answer the following questions.

If you have multiple assign lines in a Verilog program, are they ex-
ecuted in parallel or sequentially? If you have multiple lines inside
an always block, are they executed in parallel, or sequentially? If
you have multiple always blocks (block A and block B) are the lines
of code in block A executed sequentially or in parallel with lines in
block B?

Optional

The section below is optional, but covers a useful feature there were questions
from students about last class.

Module Generation and For Loops

When instantiating a module multiple times, especially when the module needs
to be instantiated a variable amount of times, you can utilize a for loop and gen-
erate block. The following URL has a useful example: https://www.chipverify.
com/verilog/verilog-generate-block

Modify the 4-bit adder module you created in Lab 4 to instead use a
generate block to instantiate the full adder modules.

3

https://verilogguide.readthedocs.io/en/latest/verilog/procedure.html
https://verilogguide.readthedocs.io/en/latest/verilog/procedure.html
https://www.chipverify.com/verilog/verilog-generate-block
https://www.chipverify.com/verilog/verilog-generate-block

