ECE275: Sequential Logic Circuits
Lab 8: Simulation

Pascal Francis-Mezger

November 14, 2021

Contents
0 Lab Overview

1 Part 1: Analyzing a Verilog Program Utilizing the ModelSim
Software
1.1 Installing the ModelSim software
1.2 Create a Simple Verilog Program
1.3 Createa Testbench
1.4 Set Path to ModelSim
1.5 Run Simulation
1.6 Interact with the Simulation
1.7 Part 1 Completion

2 Part 2

© ® N O w A W N =

== e
N o= O

-
@

0 Lab Overview

The goal of this lab is to utilize the ModelSim simulator to simulate your Verilog
code without the use of the FPGA. This is an incredibly important part of FPGA
design, as it can be very difficult to diagnose issues with your code when running
on the FPGA. The simulator allows you to see specific states of logic with very
tight timing constraints on inputs and outputs.

1 Part 1: Analyzing a Verilog Program Utilizing
the ModelSim Software

1.1 Installing the ModelSim software

You will need to use the Altera Modelsim software for this lab. You should first
check if you already have it installed from the initial installation of Quartus at
the beginning of the semester. You can check in the Windows ” Add or remove
programs” section if Modelsim is installed. If it is not, you can download it
from https://fpgasoftware.intel.com/13.0spl/7edition=web. After the
download is finished, install the software. Pay attention to the installation
directory question, as you will need this later. I left it as the default C:\altera\
13.0spl and will use that for an example later in this writeup. If you modify
it, keep that in mind for specifying the Modelsim location later.

1.2 Create a Simple Verilog Program

Create a new Quartus project, and from your top level utilize the Verilog module
shown below. This should be the same code from the end of lab last week.
Instantiate the module with SWI0] as your clock, SW[1] as R, SW[2] as S, and
LEDI0] as Q. Test the code on your FPGA board to make sure it is working
before moving on to the next step. It should set the Q output on the rising edge
of the clock pulse if S is set, and reset the Q output on the rising edge of a clock
pulse if R is set.

module RS_Latch(
input Clk,
input R,
input S,
output Q

wire R_g, S_g
assign R
assign S
assign Qa = ~
assign Q
assign Q
endmodule

1.3 Create a Testbench

A testbench is essentially a Verilog module that sets timing for simulating the
Verilog code. Normally you would create the testbench as a seperate Verilog file

(as we learned last week how to include external Verilog files/modules in your
code), but in this case feel free to keep it in the same file as your top level for easy
troubleshooting. If you are interested in learning more about testbenches outside

this lab, or are trying to troubleshoot this lab, you can read more about Model-

sim testbenches in this Intel document: https://ftp.intel.com/Public/Pub/
fpgaup/pub/Teaching Materials/current/Tutorials/Verilog/Using_ModelSim.
pdf.

1 ‘timescale 1mns / 1ps

2 module testbench ();

3 reg Clk;

4 reg R;

5 reg S;

6 wire Q;

7 RS_Latch rs1i1 (Clk,R,S,Q);

8 initial

9 begin

10 Clk <= 0; R <= 0; S <= 0;

11 #20 Clk <= 0; R <= 0; S <= 1;
12 #20 Clk <= 1; R <= 0; S <= 1;
13 #20 Clk <= 0; R <= 0; S <= 0;
14 #20 Clk <= 0; R <= 1; S <= 0;
15 #20 Clk <= 1; R <= 1; S <= 0;
16 #20 Clk <= 0; R <= 0; S <= 0;
17 end

18 endmodule

I have written the testbench for you to use in the Verilog code shown above. The
first line ”‘timescale 1ns / 1ps” sets the time deltas for changing input values
at 1ns, and simulation precision at 1ps. Setting a lower simulation precision
can give higher accuracy, but will increase simulation time. The inputs for
simulation are then defined as registers, and outputs as wires. Next, the modules
to be simulated are instantiated. In this case that is the RS_Latch module. The
next section is contained by the initial, begin, and end lines. The code inside
sets the initial values for the inputs, and then times for them to be modified,
based on the the timescale value. In the code shown in the example, the CIk,
R, and S inputs are all 0. 20ns later, the set bit is modified to a 1. 20ns after
that, the Clk bit is also modified to a 1. This continues through a reset cycle
as well. This means that when the simulation is run, the Q output should turn
on after 40ns, and then turn back off 60ns later.

1.4 Set Path to ModelSim

To utilize your testbench you will first need to tell Quartus what simulator
to use, and its location. In Quartus, go to the tools menu, and then to-
wards the bottom, select options. In the window that appears, in the top
left under general, select the option for EDA Tool Options. Here you will find
ModelSim-Altera towards the bottom. Click the three dot icon to the right of
the ModelSim-Altera, and then browse to your ModelSim installation directory.
You will need to go deeper into the directory for the path it is looking for. In
my case that was C:\altera\13.0spl\modelsim_ase\win32aloem. You will
have to modify this path if you selected a different installation directory for
your ModelSim installation.

1.5 Run Simulation

After you have selected your Modelsim installation, you can move on to the
actual simulation. In Quartus go into the tools menu, go to the Run Simulation
Tool section, and choose the RTL Simulation option. If you get an error, then
you likely have not installed ModelSim or have not set your path correctly to
your ModelSim installation.

1.6 Interact with the Simulation

The last step should have opened a separate window, ModelSim Altera. By
default, none of the waves you will want to view will be selected, and your
testbench will likely not be selected. To select your testbench, you will need
to expand the work option under the libraries on the left. As long as you have
run compilation on your top level, the testbench should show under the work
section. Double click on it to set it as active. Now under objects and processes
you should see the inputs and outputs from the testbench. Right click on each
of Clk, S, R, and Q and choose the option to add wave. You should now see a
wave graph on the right, but it will not contain data until you actually run the
simulation.

The option to run time steps of the simulation are at the top of ModelSim
program, next to a box that says ”100ps”. This is the time step value the
ModelSim simulation will simulate each time you hit the run option. This is
significantly shorter than the amount of time before the first input will change
state (100ps vs 20ns). You can either increase this value and use the run button,
or farther to the right there is a run -all option that will run the full simulation
time. This should simulate out to 120000ps, which by default will not fit well
on your graph. To see all the data easily, right click on the graph and choose
the zoom full option. With this you should see the full waveforms that show a
full set/reset cycle of the RS_Latch circuit.

1.7 Part 1 Completion

Modify your testbench file to use different time values for the clock, set, and
reset. Show your TA how this effects your waveform output in the simulation,
and explain to them the changes you made.

2 Part 2

For part 2, create a testbench for one of your previous labs. Test against several
input values, and show on the simulation the output matches your expectations.
It is possible to loop or create a clock for sequential code in the testbench. View
the testbench on page 9 of https://ftp.intel.com/Public/Pub/fpgaup/pub/
Teaching_Materials/current/Tutorials/Verilog/Using_ModelSim.pdf for
an example of using more advanced logic for testing in your testbench.

