Logic minimization: Minimum-cost circuits

Vikas Dhiman for ECE275 September 19, 2022 ムt_ン Z Logic minimization 1 A general optimization criteria for multi-level logic are to Minimize some combination of: Δt_3 1. Area occupied by the logic gates and interconnect; 2. the Critical Path Delay of the longest path through the logic; 3. the Degree of Testability of the circuit, measured in terms of the percentage of faults covered by a specified set of test vectors, for an appropriate fault model (Eg., single stuck faults, multiple stuck faults, etc.); 4. Power consumed by the logic gates. In this course, we will start with two-level multi-input circuits and a criteria based on the number of gates/transistors/diodes. Two level arout Programmable Logic Arrays 2 (PLW)OR ARRAY Inputs łм Implicants AND OR AB N Arrav Arrav ł AND ARRAY Outputs products form SUM

3 **Two-level circuits**

The cost that we are going to consider in this class depend upon:

1. Number of gates. 2. Number of input to the gates. More gates need more transistors, more area on the chip. More-inputs the gate need more transistors within each gate. Number of gate inputs can be considered secondary criterion to the number of rates. format + 1 and = 3 anel, 4 gates format + 1 and = 3 anel, 4 gates format + 1 and = 3 anel, 4 gates format + 1 and = 3 anel, 4 gates format + 1 and = 3 anel, 4 gates format + 1 and = 3 anel, 4 gates format + 1 and = 3 anel, 4 gates format + 1 and = 3 anel, 4 gates format + 1 and = 3 anel, 4 gates format + 1 and = 3 anel, 4 gates

X 4 gates Total Number of inputs = 3+3+2+3 OR gizÁBC zinputs X-3 g_{2} 3 93 - 8+3=11 Total cost - 4+11 = 15

4.1 Incompletely specified functions or Don't cares

Figure 1: 7 Segment Representations of Each Integer

TU x, x2 U F $\mathcal{H}_{\mathcal{L}}$ 7 7 $\overline{\lambda}_{2}$ 73 21.22 Nr R PRIM An fewest NI 0 literals) = $\chi_2 \chi_3$ = A. Tz こ ewest χ_{1} low est cost ---- χ_{z} C FPI N2 NOT PI 2,4,8,6,32 lowens= 3 0/2 ()0 \checkmark \cap xz V \bigcirc nzt Fissent FPI

 $f(x_1, x_2, x_3) = TTM(4, 5, 6)$ Marterms 7/3 × 2 ス ()0 \bigcirc \mathcal{O} (()0 L (\bigcirc 1 5 \bigcirc \mathcal{O} \bigcirc \bigcirc \mathcal{O} \mathcal{D} $\chi_{7} \chi_{3}$ 4 \bigcirc 3 2 KZ $\overline{\mathcal{D}}$ (3 + 72 23 X \sim - A z AND (Ý #; lorgate (ost gates + 4 mputs 0: _ 2 6 -

	DOD	T 7 1		
	BCD	Value		LED Segment
D_3	D_2	D_1	D_0	E
0	0	0	0	0
0	0	0	1	1
0	0	1	0	0
0	0	1	1	1
0	1	0	0	1
0	1	0	1	1
0	1	1	0	0
0	1	1	1	1
1	0	0	0	0
1	0	0	1	1
1	0	1	0	d
1	0	1	1	d
1	1	0	0	d
1	1	0	1	d
1	1	1	0	d
1	1	1	1	d

Example 3. Find minimum cost expression for the function

$$f(x_1, \dots, x_4) = \sum m(2, 4, 5, 6, 10) + D(12, 13, 14, 15)$$

Problem 3. Find minimum cost expression for the function

$$f(x_1, \dots, x_4) = \sum m(0, 2, 4, 6, 7, 8, 9, 13) + D(1, 12, 15)$$

Jorn Mm, cost expression from K-map D Find all PE D Find all FZPE D Find all FZPE D Find all FZPE D FILT D SON Jorn

 $f = \overline{\chi}_{1} + \overline{\chi}_{2} \frac{\chi_{3}}{1+2m}$ $f = (\overline{\chi}_{1} + \chi_{3}) \cdot (\overline{\chi}_{1} + \chi_{2}) \leftarrow POS$ Ig + 2m Ig + 2m(ost of POS form = 3+3+3=9Min cost expression is 501 form $f = \overline{\lambda}_1 + \overline{\lambda}_2 \overline{\lambda}_3$

f= ITM(2,5,6) 61 γL_{γ} $PL_{S}: \overline{\lambda_{1}}\overline{\lambda_{2}}, \overline{\lambda_{1}} \overline{\lambda_{3}}, \overline{\lambda_{2}}\overline{\lambda_{3}}, \overline{\lambda_{2}}\overline{\lambda_{3}}, \overline{\lambda_{2}}\overline{\lambda_{3}}$ EPPs: 1272 x2 x2 x3 $f = \chi_2 \chi_2 + \overline{\chi_2} \chi_3 + \overline{\chi_1} \chi_2$ mm POS 2, 7, , 2, 7, 7, 7, 7, EPIS= PIS= 21f = 0 O 6 1(1, $f = \pi_2 \pi_3 + \pi_1 \pi_2 \pi_3$ J. Demongan's complement $f = (22 + 23) \cdot (21 + 22 + 23)$ no 805 212 713 + 7273 + 72, 72 19+2m 19+2m 19+2m (ostSOV Jorm : يں 1g+3m = 3+3+3+4 = 13

 $(ost of Pos form: f=(\overline{2l_2+2l_3}) \cdot (\overline{2l_1+2l_2+2l_3})$ 1g+2mm 1g+3m (ç = 2 w $\begin{array}{rcl} \text{Min (ost exprises 10 pos form)} &=& 3+4+3=0\\ & & & & \\ & & & \\ & &$