
NAND/NOR gates + Quine McCluskey + Petricks

Vikas Dhiman for ECE275

September 28, 2022

1 Circuit design using NAND/NOR gates

Remark 1. NAND-NAND logic is generated from SOP form. NOR-NOR logic is generated from POS form.

Remark 2. NOT gate can also be created from a NAND gate $\bar{x} = \overline{x \cdot x}$. x -

Remark 3. NOT gate can also be created from a NOR gate $\bar{x} = \overline{x + x}$.

Problem 1. Design the simplest circuit that implements the function $f(x_1, x_2, x_3) = \sum m(3, 4, 6, 7)$ using (1) NAND gates only (2) NOR gates only.

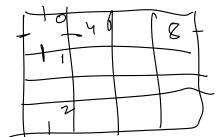
2 Quine-McCluskey

This is not in the text-book. For additional reading, please refer to the linked resources on the website.

Definition 1 (Implicant). Given a function f of n variables, a product term P is an implicant of f if and only if for every combination of values of the n variables for which P = 1, f is also equal to 1.

Definition 2 (Prime Implicant). A prime implicant of a function f is an implicant which is no longer an implicant if any literal is removed from it.

There are 4 main steps in the Quine-McCluskey algorithm:


 \longrightarrow 1. Generate Prime Implicants

- 2. Construct Prime Implicant Table. PIs as columns, and minterms as rows (don't cares are excluded).
 - 3. Reduce Prime Implicant Table by repeating following steps until they it cannot be reduced further
 - (a) Remove Essential Prime Implicants
 - (b) Row Dominance: Remove *dominating* rows. (i.e. unnecessary minterms)
 - (c) Column Dominance: Remove *dominated* columns. (i.e. remove unnecessary PIs)

4. Solve Prime Implicant Table by Petricks method

2.1 Generate Prime Implicants

Example 2. Generate prime implicants of the function $F(A, B, C, D) = \sum m(0, 2, 5, 6, 7, 8, 10, 12, 13, 14, 15)$ using Quine-McCluskey method

Steps:

- 1. Start with writing minterms in binary format (include don't cares as minterms).
- 2. Create potential groups of minterms that can be combined (merged). The only minterms that can be combined differ only be single 1. Create a new list of combined minterms as n-1 literal implicants.

- 3. Check off the minterms that could be combined. Unchecked minterms are prime implicants (PIs).
- 4. Repeat the grouping process with n-1 literal implicants.

Problem 2. Generate PIs for the function $F(A, B, C, D) = \sum m(0, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13)$.

2.2 Prime Implicants table and reduction

Example 3. Reduce the prime implicants $\{\bar{B}\bar{D}, C\bar{D}, BD, BC, A\bar{D}, AB\}$ using prime implicants table.

Example 4.

CD	B ₀₀	01	11	10
00	1	1	0	0
01	0	1	1	0
11	0	0	1	1
10	0	0	0	0

Example 5.

mple 5.		_			
	CD	B_{00}	01	11	10
	00	d	0	0	0
	01	1	1	d	d
	11	1	1	0	0
	10	1	d	0	0

Example 6. Reduce the following PI table

	$\bar{A}\bar{D}$	$\bar{B}\bar{D}$	$\bar{C}\bar{D}$	$\bar{A}C$	$\bar{B}C$	$\bar{A}B$	$B\bar{C}$	$A\bar{B}$	$A\bar{C}$
0	X	X	X						
2 3	X	X		X	X				
				X	X				
4 5 6	X		X			X	X		
5						X	X		
6	X			X		X			
$\tilde{7}$				X		X			
$\begin{array}{c} 7 \\ 8 \\ 9 \end{array}$		X	X					X	X
9								X	X
10		X			X			X	
11					X			X	
12			X		X		X		X
13							X		X

2.3 Petricks method

	$p_1 = \bar{A}C$	$p_2 = \bar{B}C$	$p_3 = \bar{A}B$	$p_4 = B\bar{C}$	$p_5 = A\bar{B}$	$p_6 = A\bar{C}$
3	X	X				
5			X	X		
7	X		X			
9					X	X
11		X			X	
13				X		X

Example 7. Solve the Prime Implicant table using Petrick's method

Example 8. Find the minimum SOP expression for the function $F(A, B, C, D) = \sum m(2, 3, 7, 9, 11, 13) + \sum d(1, 10, 15)$ using Quine-McCluskey method.

min POS min sol POS -Ł √ ①] nz 2 min sop for F 'LZ 3 Take inverse on both sides Nr I Apply Demorgan's toget PO \mathcal{K} F $\chi_1 \chi_2$ Ю \bigcirc 0 $f = \overline{\chi}_1 \chi_3 + \overline{\chi}_2 \overline{\chi}_1$ l う $= \overline{\lambda_2} \overline{\lambda_3} \cdot \overline{\lambda_2} \overline{\lambda_1}$ f シ (x2+73).(x2+x1) = min POS $\mathcal{A}_{\mathcal{D}}$ χ_{γ} $\overline{\chi}$ źζ NOR

					Quin	Mc. (lu	, Kp (
Gro H	up M,	mterms	Repre	mentation		-	V
	0	b	000	D			
~		[000				
	1	24		0 0 0			
		8	`				
) \			
	2	6 9		 > ヽ ヽ ロ			
				20			
		ר דו					
	3	13	1 6	DI			
		14	1 (10		1	
	4	15			i F(A, B, C, D)	$=\sum m(0, 2, 5, 6, 7, 5)$	8, 10, 12, 13, 14, 15)
	1					215	iolo i it
		N. +	IP	epor		3-literal	Represental
Goup	2 #	Minstern			/	Minierns	
~		Õ		2000 V		(0,2)	00-0
0				0010		$(0, \mathcal{C})$	-00D
	.η	2		1000		(2,6)	0-10
	,	8		0101	/		
				OILDV		(2_{10})	
3		6) (0		10101 0011		(8,10)	10-0
7	2	12		1100		(8,12)	1-00
- (-		\		$\bigcirc 111$		(5,7)	
S	\mathcal{L}	/				(5,13)	- 10
$\widehat{\Delta}$	\mathcal{I}				•		0 -
		.14		(110		(6,7)	
\bigcirc	4	15		$\left\langle 1111\right\rangle$		(6,14)	
				_\		(10,14)	(-10)
						(12,13)	110-
						(12,14)	(11-0

य य र q ١, 51 -10 Ц 10 2 0 ſ