
NAND/NOR gates + Quine McCluskey + Petricks

Vikas Dhiman for ECE275

September 28, 2022

1 Circuit design using NAND/NOR gates

Remark 1. NAND-NAND logic is generated from SOP form. NOR-NOR logic is generated from POS form.

Remark 2. NOT gate can also be created from a NAND gate $\bar{x} = \overline{x \cdot x}$.

$$x - \bigcirc$$

Remark 3. NOT gate can also be created from a NOR gate $\bar{x} = \overline{x+x}$.

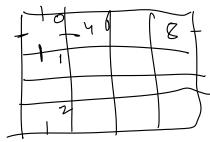
$$x - \bigcirc$$

Problem 1. Design the simplest circuit that implements the function $f(x_1, x_2, x_3) = \sum m(3, 4, 6, 7)$ using (1) NAND gates only (2) NOR gates only.

2 Quine-McCluskey

This is not in the text-book. For additional reading, please refer to the linked resources on the website.

Definition 1 (Implicant). Given a function f of n variables, a product term P is an implicant of f if and only if for every combination of values of the n variables for which P = 1, f is also equal to f.


Definition 2 (Prime Implicant). A prime implicant of a function f is an implicant which is no longer an implicant if any literal is removed from it.

There are 4 main steps in the Quine-McCluskey algorithm:

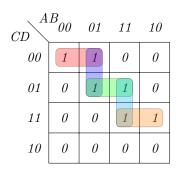
- 1. Generate Prime Implicants
- 2. Construct Prime Implicant Table. PIs as columns, and minterms as rows (don't cares are excluded).
 - 3. Reduce Prime Implicant Table by repeating following steps until they it cannot be reduced further
 - (a) Remove Essential Prime Implicants
 - (b) Row Dominance: Remove dominating rows. (i.e. unnecessary minterms)
 - (c) Column Dominance: Remove dominated columns. (i.e. remove unnecessary PIs)
 - 4. Solve Prime Implicant Table by Petricks method

2.1 Generate Prime Implicants

Example 2. Generate prime implicants of the function $F(A, B, C, D) = \sum m(0, 2, 5, 6, 7, 8, 10, 12, 13, 14, 15)$ using Quine-McCluskey method

Steps:

- 1. Start with writing minterms in binary format (include don't cares as minterms).
- 2. Create potential groups of minterms that can be combined (merged). The only minterms that can be combined differ only be single 1. Create a new list of combined minterms as n-1 literal implicants.


- 3. Check off the minterms that could be combined. Unchecked minterms are prime implicants (PIs).
- 4. Repeat the grouping process with n-1 literal implicants.

Problem 2. Generate PIs for the function $F(A, B, C, D) = \sum m(0, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13)$.

2.2 Prime Implicants table and reduction

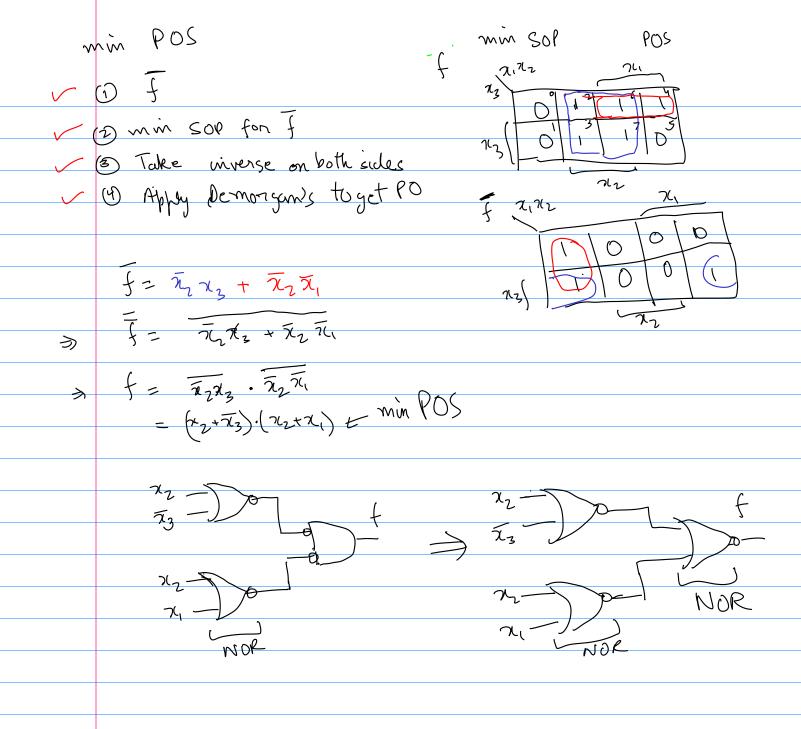
Example 3. Reduce the prime implicants $\{\bar{B}\bar{D}, C\bar{D}, BD, BC, A\bar{D}, AB\}$ using prime implicants table.

Example 4.

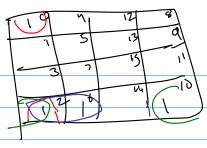
Example 5.

CD A	B_{00}	01	11	10
00	d	0	0	0
01	1	1	d	d
11	1	1	0	0
10	1	d	0	0

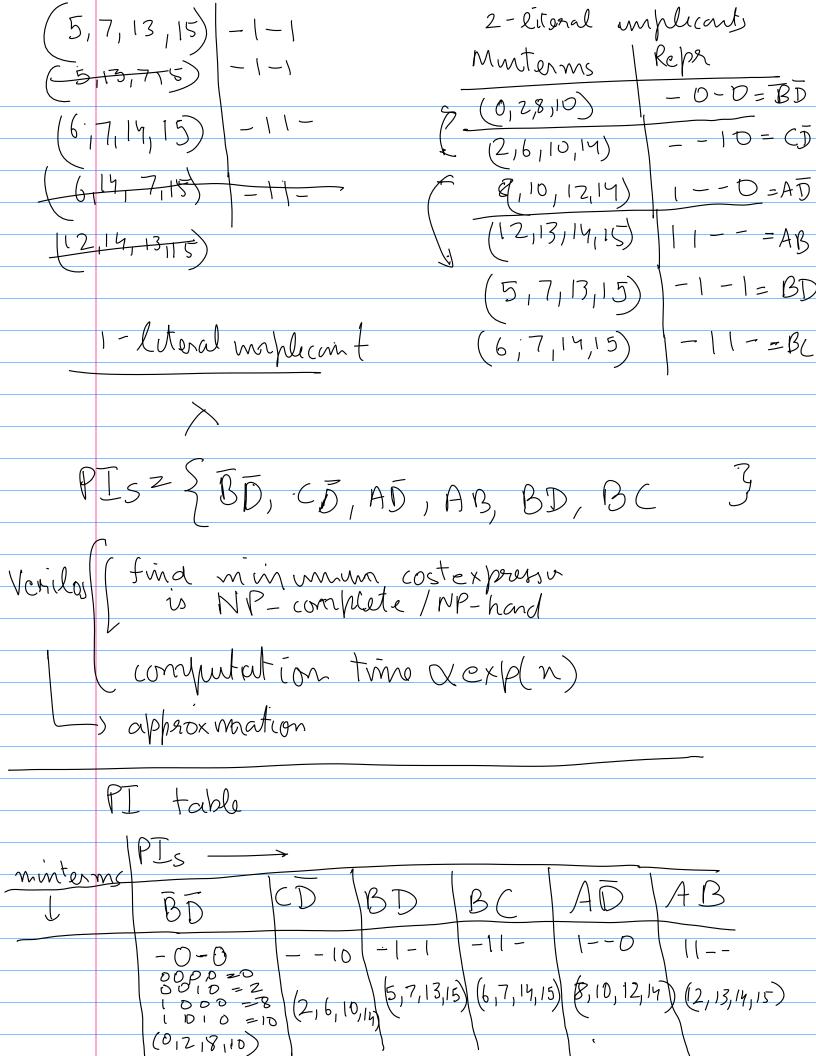
Example 6. Reduce the following PI table


LA	iipic (J. 1000	acc onc	Journ	cong 1.	1 table			
	$ \bar{A}\bar{D} $	$\bar{B}\bar{D}$	$\bar{C}\bar{D}$	$\bar{A}C$	$\bar{B}C$	$\bar{A}B$	$B\bar{C}$	$A\bar{B}$	$A\bar{C}$
0	X	X	X						
2	X	X		X	X				
3				X	X				
4 5	X		X			X	X		
5						X	X		
6	X			X		X			
γ				X		X			
8		X	X					X	X
g								X	X
10		X			X			X	
11					X			X	
12			X		X		X		X
13							X		X

2.3 Petricks method


Example 7. Solve the Prime Implicant table using Petrick's method

	$p_1 = \bar{A}C$	$p_2 = \bar{B}C$	$p_3 = \bar{A}B$	$p_4 = B\bar{C}$	$p_5 = A\bar{B}$	$p_6 = A\bar{C}$
_	X	X				
<i>5</i>	17		X	X		
7	X		Λ		X	\mathbf{v}
9 11		Y			Λ Y	Λ
13		Α		X	Α	X


Example 8. Find the minimum SOP expression for the function $F(A, B, C, D) = \sum m(2, 3, 7, 9, 11, 13) + \sum d(1, 10, 15)$ using Quine-McCluskey method.

		Λ Λ .	Quin	Mc.(Lus	Key
Group H	Muterns	Representation			V
0	b	0000			
	7-	1000			
}	4	0 1 p Q			
	3	0011			
	5 6 9	0 10 1			
	9 1	(000			
-	7	011			
3	13	1001			
	(4	1110			
Ч	15		i F(A, B, C, D) =	$= \sum m(0, 2, 5, 6, 7, 8)$	3, 10, 12, 13, 14, 15)
				7 1 h	100 in t
	1 Minto	Repor		3-literal	Miracconni Reprosentat
Group #	umotris M				200
	0	0000		(0,2)	00-0
	0	0010		(0,8)	-000
1.	2	1000		2,6)	0-10
	5	0101	- (2,10)	-010
	6	1010 V		•	10-D
x 7.	(0	1100 4		(8,10)	1-00
		,		(8,12)	
	7	01110		(5,7)	01-1
3	13	(101)		(5,13)	-101
7	.14	(110		(6,7)	0 -
			,	(6,14)	- H O
	4 . 15	1111		(10,14)	(-10
				(12,13)	110-
			_	(12,14)	11-0

		1			
		,			ĀBĀR
				3-leteral v	nperimet
Gou	6 II \	1 amotris M	Repor	Musterns	Represent
		0	0000	1 (0,2)	00-0.
C		Ü	0010	(0,8)	-00DV
7	.1	2 8 _	1000	(2,6)	0-10 _V
(5	0101	(2,10)	-010V
		(0)	1010	71(8,10)	10-DV
7	2	(2		(8,12)	1-00 V
	4	7	01110	5,7)	01-1
ت ت	3	13	1101	(5,13)	-101
		.14	(110	(6,7)	011-
	4	15	1111	(6,14)	
			`	(10,14)	1-10 /
-	2 litaral imar-	icanto		(12,13)	11-0
	2-literal impl		$\overline{\mathcal{B}}$ $\bar{\mathcal{D}}$		
Mir	terms ————	Representation		(7,15)	-111
2/0,2	,810)	- 0 - 0		(13,15)	11-1
				(14,15)	111-
- (U) 8	,410)	1-0-0	1 ~		, ,
	. ((C) Dash showld	1 match
(2,6,	10,14)	10		exculy	
2+6	(4)		(2	, , , , , ,	
	/ ' I' 'ノ			should di	ffer
(B , , U	0,12,14)	10	should	on The unpliced of the by exact.	ant
(81)	7 11) 14		***************************************	orifler of exact.	ly 1-61t
	-1'~) '')	1 0			•
(121	13, 14,15) / II			
		l			

PI table

٠,	P.	\sum_{S}		\rightarrow										
minter.	ms	1		(7	5 1	112	X	-	2		Δ		VA	<u> </u>
		B	D	,			+						+	
		- ()-()	-	- 10	<u> </u>	1 -	1	_	11-	-	0		(
		000	00 = 2 00 = 2 01 0 = 1	//) (10		5,7	,13,15) (f	, 7, 14, 15)	8,	10, 12, 14		(2,13,14,15)
		() ()	010=1	d (.	2,6,10	7/4			$\sqrt{}$, , ,				
	\ (~ O 1	218110)		_	}								
~ *		>	<	+					\dashv					
-2		\rightarrow	<		X									
5*				1				×						
(6)					X					×				
7								*		X		7		
-8			×											
_10			X		X							X		
(12)						-						×		X
13	1			·				X	4	,	1		-	×
(14)					X				\	×	-	×		*
-15								Х		X			\dashv	_ ×
	- 1		·					\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	\					l
() 1-	md	Ţ	- 1715	2	} (S) D	/	3 D						