
September 28, 2022

1 Circuit design using NAND/NOR gates

Remark 1. NAND-NAND logic is generated from SOP form. NOR-NOR logic is generated from POS form.

Remark 2. NOT gate can also be created from a NAND gate $\bar{x} = \overline{x \cdot x}$.

Remark 3. NOT gate can also be created from a NOR gate $\bar{x} = \overline{x+x}$.

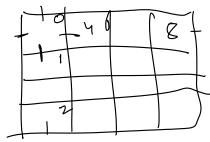
$$x - \bigcirc$$

Problem 1. Design the simplest circuit that implements the function $f(x_1, x_2, x_3) = \sum m(3, 4, 6, 7)$ using (1) NAND gates only (2) NOR gates only.

2 Quine-McCluskey

This is not in the text-book. For additional reading, please refer to the linked resources on the website.

Definition 1 (Implicant). Given a function f of n variables, a product term P is an implicant of f if and only if for every combination of values of the n variables for which P=1, f is also equal to f.


Definition 2 (Prime Implicant). A prime implicant of a function f is an implicant which is no longer an implicant if any literal is removed from it.

There are 4 main steps in the Quine-McCluskey algorithm:

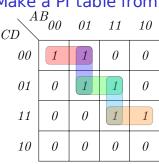
- 1. Generate Prime Implicants
- 2. Construct Prime Implicant Table. PIs as columns, and minterms as rows (don't cares are excluded).
 - 3. Reduce Prime Implicant Table by repeating following steps until they it cannot be reduced further
 - (a) Remove Essential Prime Implicants
 - (b) Row Dominance: Remove dominating rows. (i.e. unnecessary minterms)
 - (c) Column Dominance: Remove dominated columns. (i.e. remove unnecessary PIs)
 - 4. Solve Prime Implicant Table by Petricks method

2.1 Generate Prime Implicants

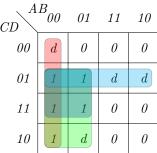
Example 2. Generate prime implicants of the function $F(A, B, C, D) = \sum m(0, 2, 5, 6, 7, 8, 10, 12, 13, 14, 15)$ using Quine-McCluskey method

Steps:

- 1. Start with writing minterms in binary format (include don't cares as minterms).
- 2. Create potential groups of minterms that can be combined (merged). The only minterms that can be combined differ only be single 1. Create a new list of combined minterms as n-1 literal implicants.


- 3. Check off the minterms that could be combined. Unchecked minterms are prime implicants (PIs).
- 4. Repeat the grouping process with n-1 literal implicants.

Problem 2. Generate PIs for the function $F(A, B, C, D) = \sum m(0, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13)$.


2.2 Prime Implicants table and reduction

Example 3. Reduce the prime implicants $\{\bar{B}\bar{D}, C\bar{D}, BD, BC, A\bar{D}, AB\}$ using prime implicants table.

Example 4. Make a PI table from the K-map and reduce the PI table to get min-SOP form

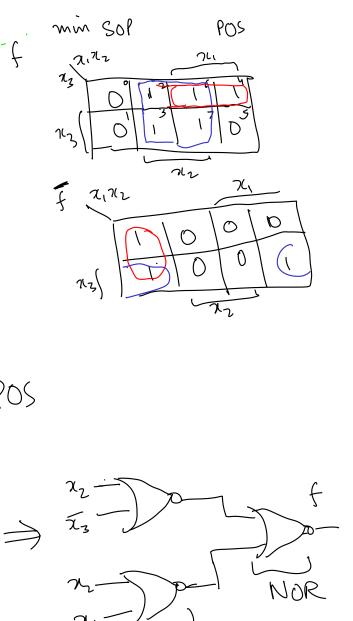
Example 5. Make a PI table from the K-map and reduce the PI table to get min-SOP form AB_{00} B_{01} B_{00} B_{01} B_{00} B_{01} B_{00} B_{00}

Example 6. Reduce the following PI table and find the minimal SOP form

	$\bar{A}\bar{D}$	$\bar{B}\bar{D}$	$\bar{C}\bar{D}$		$\bar{B}C$	$\bar{A}B$	$B\bar{C}$	$A\bar{B}$	$A\bar{C}$
0	X	X	X						
2	X	X		X	X				
2 3				X	X				
4 5	X		X			X	X		
5						X	X		
6	X			X		X			
γ				X		X			
8		X	X					X	X
g								X	X
10		X			X			X	
11					X			X	
12			X		X		X		X
13							X		X

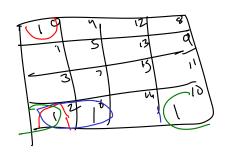
2.3 Petricks method

Example 7. Solve the Prime Implicant table using Petrick's method and find the min-SOP form

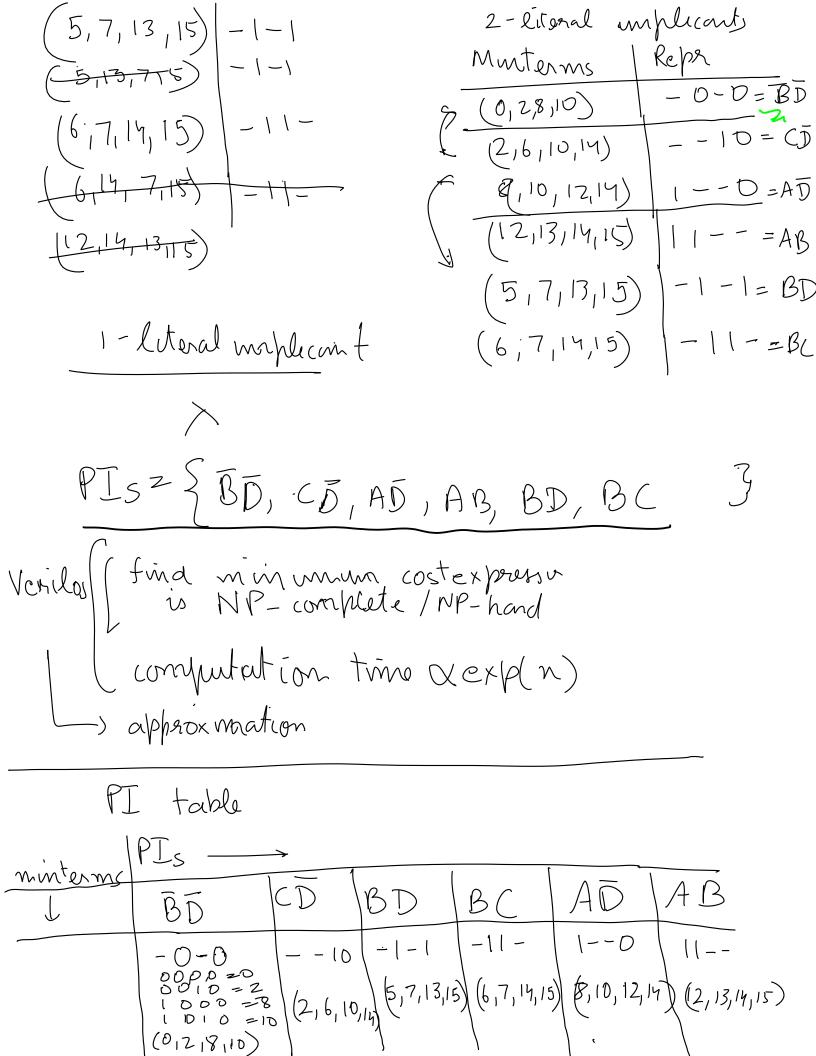

	$p_1 = \bar{A}C$	$p_2 = \bar{B}C$	$p_3 = \bar{A}B$	$p_4 = B\bar{C}$	$p_5 = A\bar{B}$	$p_6 = A\bar{C}$
3	X	X				
5			X	X		
γ	X		X			
9					X	X
11		X			X	
13				X		X

Example 8. Find the minimum SOP expression for the function $F(A, B, C, D) = \sum m(2, 3, 7, 9, 11, 13) + \sum d(1, 10, 15)$ using Quine-McCluskey method.

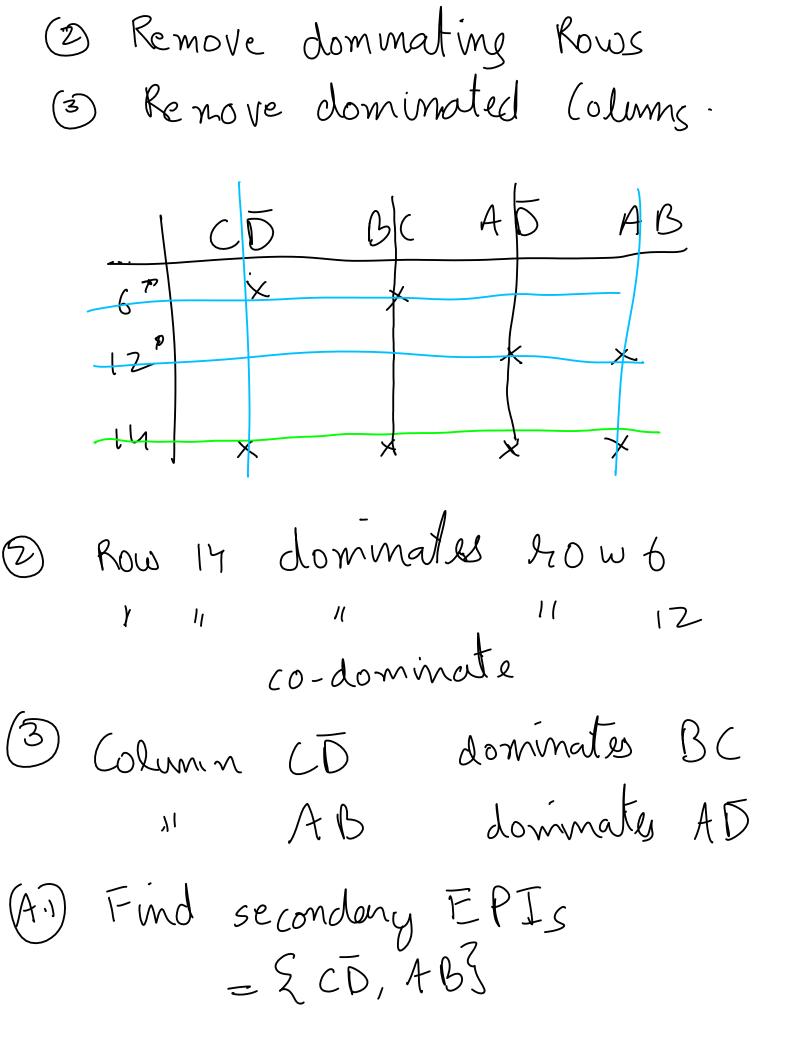
min POS


V (1) \overline{f} V (2) min SOR for \overline{f} V (3) Take viverse on both sides

V (4) Apply Demorgans to get PO $\overline{f} = \overline{\lambda_1} \chi_3 + \overline{\lambda_2} \overline{\lambda_1}$ $\overline{f} = \overline{\lambda_2} \chi_3 \cdot \overline{\lambda_2} \overline{\lambda_1}$ $= (\chi_2 + \overline{\chi_3}) \cdot (\chi_2 + \chi_1) t \quad \text{min POS}$

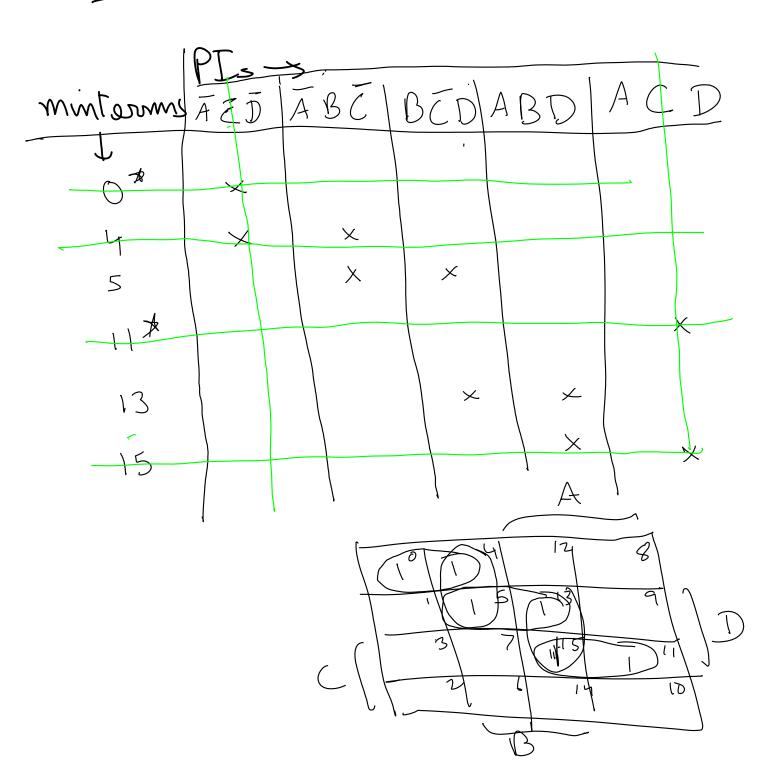


				Quin	Mc.Elus	Key
(exoup	Muterns	Representation			
-	0	6	0000			
_		1 2 4 8	0001			
	.2	3 5 6 9 10 17	0011			
	3	13	1000			
	4	15	(1 1)		$= \sum m(0, 2, 5, 6, 7, 8)$	
Go	wp II	motivi M 1	ns Repor		3-literal v Monterns	mplicenet Representat
	0	0	0000		(0,2) (0,8)	00-0
.\		2 8 5	0101	/ \	(2,6)	0-10
7	2	(0)			(8,10) (8,12)	1-0-0
	~~~	7	0111		(5,7) (5,13)	- 10 l
		. 11		<u></u>	(6,7)	01-1
		4 /1- 19			(6,14)	-     O   -   O
				_	(10,14) (12,13) {12,14)	
						•

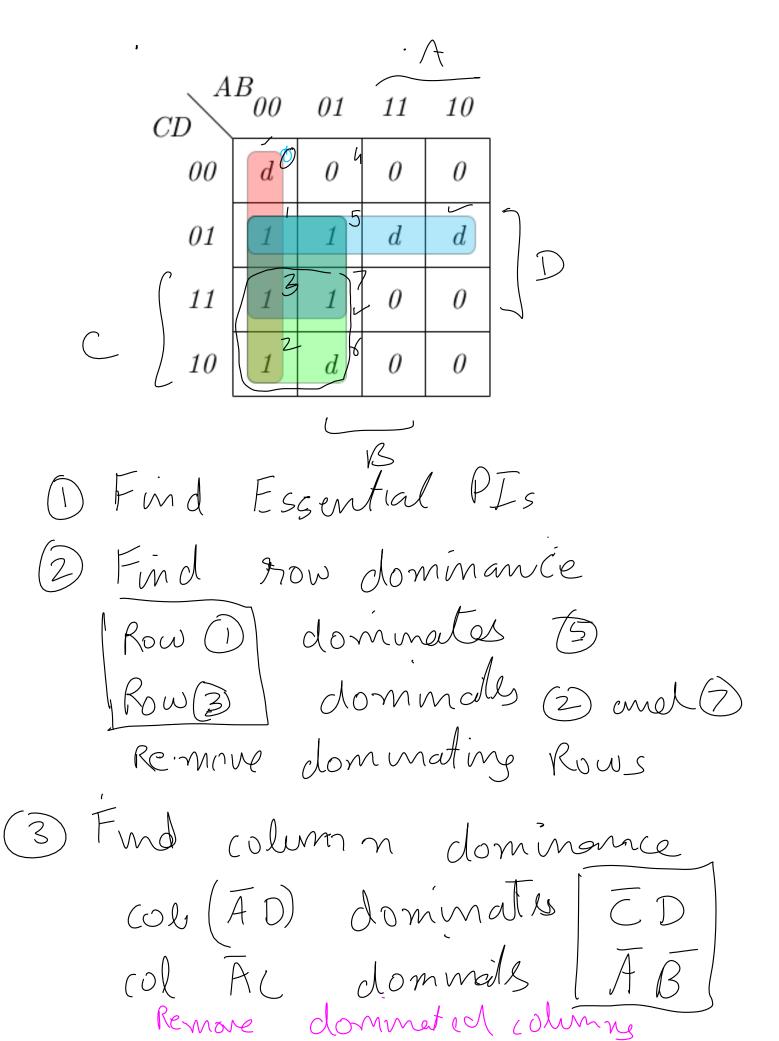

Quin Mc. Eluskey



	丁			
				ĀBĀK
	\	<u> </u>	3-literal v	mperional
Group #	1 amotris M	Repor	Muiterns	Reprosent/
~	$\circ$	0000	7 (0,2)	00-00
0	2	0010	(0,8)	-00DV
· /	8	1000	(2, 6)	0-10V
	5	0110	(2,10)	-010v
	(0)	1010	77 (8,10)	10-DV
7 2	(2		(8,12)	1-00 V
	7	0111	(5,7)	01-1
3	13	1101	(5,13)	-101
	.14	(110)	(6,7)	01 1- /
4	11-15		(6,14)	-110
		•	(10,14)	(-10 V
2-literal imp	licants	(	(12,13)	) (10-D ~
Minterms	Representation	B D		
	Representation		(7,15)	-111 🗸
>(0,2,810)	-0-0		(13,15)	11-1
6/02710	7=0		(14,15)	111-
-(1)8, 410)	7 - 0 0	/ 🖒	Dala da a l	1
	10		Dash showld excutly exactly 1-1	Maidly
(2,6,10,14)			1 ex t'0, '1 1	· +
2,10,6,19)			should di	Oll Hea
(8,40,12,14)	1 0		should di	)
		should	on The unpliced of the differ by exact.	convi
(8/2/10,14)	<del>     </del> 0		J 0 . (O(	
	l .			




PI table ninterms, (5,7,13,15) (6,7,14,15) (8,10,12,14) ((2,13,14,15) (01218,10) X X X Х Х Х X X () Find EPIS = { BD, BD) Remove EPIs and covered minterns from the PI table




f=BD+BD+CD+AB mm SOP form

Example 4 PI table



(1) Fund/gremove EPIS  $= \{ \bar{A} \bar{C} \bar{D}, ACD \}$ BED ABD ABC 2) Remove dominating trows (3) Remove dominated columns BCD donmates ABC 11 ABD (1) Find secondary FPIs = EBZDBg f=AZD+ACD+BZD J min SOP Example 5 Constant PI table and then reduce it OFINAINS PI don't cares = mmtorms (2) Finding Cover exclude 1 don't carry



Find secondary EPI = { A.C.,

$$f = \overline{A}C + \overline{A}D$$

La Find minimum set of PI that cover all the mintermy Define a Boolean variable Pi = True(1) y po is included in the cover False(0) otherwise  $= 1 \quad P_2 = 1 \quad P_3 = 0 \quad P_4 = 0$ 

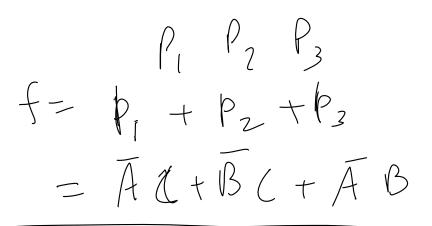
**Example 7.** Solve the Prime Implicant table using Petrick's method

Satisty a boolean condition = All montarms must be covered = (m3 must be covered)

AND (m5 must be 11)

AND (m7 /1)  $MND(M_{13})$ m3 is covered = (P, is included) OR (Az is moduded) 2 P, + P2

m5 is covered = P3 + Py


All minterm are covered 
$$\frac{M_{3} \omega ver}{m_{3} \omega ver}$$

$$= \frac{(P_{1}+P_{2})(P_{3}+P_{4})(P_{1}+P_{3})(P_{5}+P_{6})}{m_{5} \omega ver} \frac{(P_{2}+P_{5})(P_{4}+P_{6})}{m_{5} \omega ver} \frac{(P_{1}+P_{3})(P_{5}+P_{6})}{m_{5} \omega ver}$$

$$= \frac{(P_{1}+P_{3})(P_{5}+P_{6})(P_{2}+P_{5})(P_{4}+P_{6})}{(P_{1}+P_{3})(P_{5}+P_{6})(P_{2}+P_{5})(P_{5}+P_{6})}$$

= (P,P3P4+P,P4+P,P2P3P4+P,P3P4 + P2P3P4 + P2P3P4 + PP3P, +P, PyP, + P, P2P3P4+P, P2P4P4 \ +P,P3P, +P,P3P4P6+P2P3P6+P2P3P4P  $(P_2+P_5)(P_5+P_6)$ = (P,P3P4+P,P4+P,P2P3P4+P,P3P4 +P2P3P4 + P1P3P4 +P1P2P3P4 + P, P3 P4 P6 + P2 P3 P4 P2 P3 P4 P5) (P2+P5) (P5+P6)

- P, P2 P3 + P2 P4 P5 + P5 P8



(1) Ford PTs using Quine McCluskly columns procedure

- Draw PI table
- 3 Reduce PT tuble

> Loly

Remove dominated cols

Find minimum cover using method