Analog details behind the digital abstraction

Vikas Dhiman for ECE275

October 17, 2022

Some of the material is out of the textbook. Additional resources include Appendix B of Brown and Vranesic book, "Fundamentals of digital logic."

1 **Objectives**

- 1. Describe how tri-state and open-collector outputs are different from totem-pole outputs pravin voltage
- 2. Compute noise margin of one device driving the same time
- 3. Understand timing diagrams, gate delays and critical path
- 4. Design Hazard-free two level circuits

Definition 2 (Ground Voltage (V_{GND})). --> ()

Definition 3 (Input high (V_{IH}) and Input Low (V_{IL}) of a gate).

Vir is the voltage above which the gate considers the logic level to be HIGH"

$$0-5V \qquad \forall IH = 2.5V \qquad \forall DH = 5V \\ \forall EL = 2.5V \qquad \forall OH = 5V \\ \forall EL = 2.5V \qquad \forall OL = 0V \\ \forall EL = 2.5V \qquad \forall OL = 0V \\ \forall EL = 2.5V \qquad \forall OL = 0V \\ \forall OH = 0V \\ dots for a (HiGH buffut \\ dotfut \\ dotfut \\ dotfut \\ dotfut \\ fundamentary \\ fundamentary \\ example 1. \\ If V_{DD} = 5V, V_{IL} = 1.35V, V_{IH} = 3.15V, V_{OL} = 0.33V \\ dotfut \\ MH = (V_{OH} - V_{LH} = 3.4V) \\ fundamentary \\ MH = (V_{OH} - V_{LH} = 3.4V) \\ fundamentary \\ MH = (V_{OH} - V_{LH} = 3.4V) \\ fundamentary \\ MH = (V_{OH} - V_{LH} = 3.4V) \\ fundamentary \\ MH = (V_{OH} - V_{LH} = 3.4V) \\ fundamentary \\ fundamentary \\ MH = (V_{OH} - V_{LH} = 3.4V) \\ fundamentary \\ fundam$$

$$NM_{L} = V_{1L} - V_{0L} = 1.35 - 0.33 = 1.02V$$

3 Semiconductors and Doping

Remark 1. *nMOS transistors pass 0's well (output between 0 and V_{DD} - V_t). pMOS transistors pass 1's well (output between V_t and V_{DD}).*

Y PP ÞM05 B-0) f \bigvee B A ЪW wÞ P_L netwood inputs nMOJ Pulldoun onctwork Pratice prohlen gat WOR two what 5 CMÓS

n MÔS JOD Vt AVB $v_{pp} - V_t$ 1-1 15 JGND OR gate \mathbb{N} inmos is but at - game milling S, 6 MOS 2>V PD CMOS NOR A sate $-\sqrt{t}$ VA Vn 17 рD A 2 n t Van

Definition 8 (Transmission gate). Draw a schematic of transmission gate and truth table for transmission gate. What is its commonly used symbol?

Definition 9 (Tristate buffer). What is tristate buffer? Draw it's symbol and truth table? Where is it used?

Example 10. Draw a Multiplexer using transmission gates.

Example 11. Draw a Multiplexer using tristate buffers.

Definition 10 (Totem-pole). Draw a Push-pull (or Totem-pole) output NAND gate using CMOS. Can you connect this gate to a shared bus?

Definition 11 (Tristate). Draw a Tristate output NAND gate using CMOS with an output enable (OE) input. Can you connect this gate to a shared bus?

Definition 12 (Open-collector). Draw a open-collector output NAND gate. Can you connect this gate to a shared bus?

6 Verilog truth tables

Table 11-11—Bitwise binary AND operator Table 11-12—Bitwise binary OR operator

&	0	1	x	z
0	0	0	0	0
1	0	1	x	x
x	0	x	x	x
z	0	x	x	x

 -							
	0	1	x	z			
0	0	1	x	x			
1	1	1	1	1			
x	x	1	x	x			
z	x	1	x	x			

7 Timing diagrams and propagation delays

Example 12 (Timing diagram). Draw a timing diagram for an ideal NAND gate.

7.1 Delays

Definition 13 (Propagation delay (t_{pd})).

Definition 14 (Contamination delay (t_{cd})).

Example 13. Find the propagation delay of the circuit above given that propagation delay of each gate is 100ps add contamination delay of 60ps.

8 Glitches or Hazards

Definition 15 (Glitch or Hazard).

Example 14. Design a circuit that fixes the glitch in the above circuit (also known as glitch-free or hazard-free circuit).