

Date: November 30, 2022 seqdetector_top.sv Project: seqdetector

Page 1 of 1 Revision: seqdetector_top

1 module seqdetector_top(

2 input clock,

3 input reset,

4 input X,

5 output reg Z

6);

7

8 reg [2:0] state;

9 reg [2:0] next_state;

10

11 // Define states as constants

12 parameter [2:0]

13 S0 = 3'b000,

14 S1 = 3'b001,

15 S2 = 3'b010,

16 S3 = 3'b011,

17 S4 = 3'b100,

18 S5 = 3'b101,

19 S6 = 3'b110;

20

21

22 // Register Block

23 always_ff @(posedge clock or posedge reset) begin

24 if (reset)

25 state <= S0;

26 else

27 state <= next_state;

28 end

29

30 // Next state block

31 always_comb begin

32 // case statement is like if else but the condition is on a single variable

33 case (state)

34 S0:

35 next_state <= X ? S0 : S1;

36 S1:

37 next_state <= X ? S0 : S2;

38 S2:

39 next_state <= X ? S4 : S3;

40 S3:

41 next_state <= X ? S5 : S3;

42 S4:

43 next_state <= X ? S0 : S6;

44 S5:

45 next_state <= X ? S0 : S6;

46 S6:

47 next_state <= X ? S0 : S2;

48 endcase

49 end

50

51 // Output block (Moore)

52 always_comb begin

53 case (state)

54 S5: Z = 1'b1;

55 S6: Z = 1'b1;

56 default: Z= 1'b0;

57 endcase

58 end

59 endmodule

60

System Verilog FAQs

Vikas Dhiman

November 30, 2022

Question 1. Can you give us a template for all modules?

There is no general template, but the following template will work for all Synchronous Sequential
modules that do not call any other module.

1 // module keyword starts a module definition.

2 module module_named_foo(

3 // Every module should have a single bit clock and single bit reset signal

4 input wire [0:0] clock ,

5 input wire [0:0] reset ,

6 // All inputs to the module are declared as wires

7 input wire [bits1:0] input_1 ,

8 input wire [bits2:0] input_2 ,

9 ...

10 // All outputs from the module are declared as regs

11 output reg [bits3:0] output_1 ,

12 output reg [bits4:0] output_2

13);

14 // Every synchronous module will need some states

15 // States are always declared as registers

16 reg [bit5:0] state_1;

17 reg [bit6:0] state_2;

18 ...

19

20 // We have the choice of writing procedural code or structural code. Here we

21 // use procedural block. I will separate the procedural code into a

22 // register block and two combinational logic blocks

23

24 // ///

25 // First block: Register block

26 // ///

27 // Create some intermediate states

28 // These intermediate states could have been wires if we were using assign

29 // statement to create the combinational block. assign statement is easy to

30 // write only for very simple circuits like slowclock. For the rest , we use

31 // procedural code and reg for intermediate variables.

32 reg [bit5:0] next_state_1;

33 reg [bit6:0] next_state_2;

34 ...

35 // Always block that triggers only on the posedge of clock and posedge of

36 // reset signal.

37 // always_ff is same as always , but it ensures that a flip -flop circuit is

38 // synthesized.

39 always_ff @(posedge clock or posedge reset) begin

40 if (reset) begin

41 // This is the initialization block. You can assign initial values to your

42 // state here

43 state_1 <= 0;

1

44 state_2 <= 0;

45 ...

46 // Using the non -blocking assign ‘‘ <=’’ in register block is recommended

47 end else begin

48 // At the rising edge next state is copied to current state

49 state_1 <= next_state_1;

50 state_2 <= next_state_2;

51 ...

52 end

53 end

54

55 // ///

56 // Second block: converts from current state and input to next state

57 // ///

58 // 1. Most of the logic of your state machine goes here

59 // 2. Note that combinational logic always block does not trigger on posedge

60 // clock instead it triggers on any change in input.

61 // 3. You can also use always_comb instead of always @(*) which will ensure that

62 // a combinational logic is synthesized.

63 // 4. Only next_state must be on the left hand side.

64 always @(*) begin

65 if (/*some conditions on states and inputs */) begin

66 next_state_1 = //some expression of states and inputs;

67 next_state_2 = //some expression of states and inputs;

68 ...

69 // Using the blocking assign ‘‘=’’ in combinational block is recommended

70 end else if (/*more conditions on states and inputs */) begin

71 next_state_1 = // some expression of states and inputs;

72 next_state_2 = // some expression of states and inputs;

73 ...

74 end else begin

75 next_state_1 = // some expression of state and inputs;

76 next_state_2 = // some expression of state and inputs;

77 ...

78 end

79 end

80

81 // ///

82 // Third block: converts from current state and input to output (Mealy)

83 // ///

84 always @(*) begin

85 if (/* condition on states and inputs */) begin

86 output_1 = // some expression of states and inputs

87 output_2 = // some expression of states and inputs

88 ...

89 end else if (/* condition on states and inputs */) begin

90 output_1 = // some expression of states and inputs

91 output_2 = // some expression of states and inputs

92 ...

93 end else begin

94 output_1 = // some expression of states and inputs

95 output_2 = // some expression of states and inputs

96 ...

97 end

98 end

99 endmodule

Question 2. Can I combine the register block and the two combinational block into a single always block?

2

Yes, you can. Not recommended, but it works. Most students are doing everything in a single always
block. It does not mean that you should. Remember, you want to generate a circuit from this HDL code.
It is helpful for your understanding to write HDL code that corresponds to circuit blocks. You should
periodically check the RTL diagram in the Netlist viewer.

1 // module keyword starts a module definition.

2 module module_named_foo(

3 // Every module should have a single bit clock and single bit reset signal

4 input wire [0:0] clock ,

5 input wire [0:0] reset ,

6 // All inputs to the module are declared as wires

7 input wire [bits1:0] input_1 ,

8 input wire [bits2:0] input_2 ,

9 ...

10 // All outputs from the module are declared as regs

11 output reg [bits3:0] output_1 ,

12 output reg [bits4:0] output_2 ,

13);

14 // Every synchronous module will need some states

15 // States are always declared as registers

16 reg [bit5:0] state_1;

17 reg [bit6:0] state_2;

18 ...

19

20 // Always block that triggers only on the posedge of clock and posedge of

21 // reset signal.

22 // ‘‘always_ff ’’ is same as ‘‘always ’’, but it ensures that a flip -flop circuit is

23 // synthesized.

24 always_ff @(posedge clock or posedge reset) begin

25 if (reset) begin

26 // This is the initialization block. You can assign initial values to your

27 // state here

28 state_1 <= 0;

29 state_2 <= 0;

30 ...

31 // Using the non -blocking assign ‘‘ <=’’ in register block is recommended

32 end else if (/*some condition on states and inputs */)begin

33 // At the rising edge next state is copied to current state

34 state_1 <= /* some expression of states and inputs */;

35 state_2 <= /* some expression of states and inputs */;

36 ...

37 output_1 <= /* some expression of states and inputs */;

38 output_2 <= /* some expression of states and inputs */;

39 ...

40 end

41 end

Question 3. How to connect multiple modules in the top level module?

Please refer to Lab 7 for details of instantiating modules. There is confusion about whether reg can
connect to wires or not. reg CAN connect to wires and vice versa.

1 module module_top(input wire CLOCK_50 ,

2 input wire [2:0] BUTTON ,

3 ...);

4

5 // You can use wire and assign for simple combinational circuits.

6 // One a wire is assigned it cannot be assigned anything else.

7 wire reset;

3

8 assign reset = BUTTON[1];

9

10 // You can use wire to take the connect the output of one module to another.

11 wire CLOCK_10;

12 slowclock instance1_of_slowclock(CLOCK_50 ,

13 reset ,

14 CLOCK_10);

15

16 // Here wire CLOCK_10 connects the output of slowclock to the input of

17 // foo

18 module_named_foo instance1_of_foo(CLOCK_10 ,

19 reset ,

20 ...

21 ...);

22

23 endmodule

Question 4. When to use register reg vs wire wire?

Please refer back to Lab 6, when we learned about Verilog Procedural Operators. This is a quote from
Lab 6 manual: “Another important aspect of the procedural always blocks is you would use registers on
the left hand side of equations inside an always block. You would not use wires on the left hand side.” In
general, the following rules can help:

1. Inputs of a module inside the module are wire. They are declared such even when the keyward wire is
ommitted.

2. Outputs of a module inside the module are reg. They are declared such even when reg is ommitted.

3. Different modules are typically connected through a wire.

4. Only use assign with a wire on the left hand side. You CANNOT assign a wire more than one time.

5. When a symbol is on the left hand side of a equation inside the always block, it must be a reg.

6. reg are more general than wire. When in doubt use a reg.

Question 5. When to use continuous assign assign vs non-blocking assign “<=” vs blocking assign “=”?

The textbook has a very nice explanation of this usage in
Section 4.5.4. I have reproduced the summary block here. In
general, Chapter 4 is a useful read if you are still struggling
with System Verilog programming.

Question 6. What’s the deal with initial block?

You should only use initial block for simulation. It is
a non-synthesizable block, so it will not be converted into a
circuit. Instead, use a reset signal and an if (reset) block to
initialize your states.

4

Sequential logic design

Vikas Dhiman for ECE275

November 30, 2022

1 Objectives

1. Perform a state assignment using the guideline method

2. Reduce the number of states in a state table using row reduction and implication tables

3. Partition a system into multiple state machines

2 Full procedure for designing sequential logic circuit

1. Convert the word problem to a state transition diagram. Let the states be S0, S1, S2, . . . , Sn.

2. Draw state transition table with named states. For example,

Present State Next State Outputs
X = 0 X = 1 X=0 X=1

S0 S1 S2 0 0
S1 S2 S0 0 0
...

...
...

...
...

3. State reduction step: Reduce the number of required states to a minimum. Eliminate unnec-
essary or duplicate states.

4. State assignment step: Assign each state a binary representation. For example,

State name State assignments (Q2Q1Q0)

S0 000
S1 001
...

...

5. Draw State assigned transition table. For example,

Inputs (X1X0) Present State (Q1Q0) Next State (Q+
1 Q

+
0) Outputs (Z1Z0)

0 0 00 01 0 0
0 0 01 10 0 0
...

...
...

...
...

...

(a) Use excitation tables to find truth tables for the combinational circuits. For example,
the excitation table for J-K ff is

1

Q Q+ J K

0 0 0 d
0 1 1 d
1 0 d 1
1 1 d 0

3 State assignment by guideline method [1, Section 8.2.5]

3.1 State Maps

Example 1. Draw a state map for a sequential assignment of the states

3.2 Guideline method

Guideline method states that the following states should be adjacent in the state map according
the following priorities:

Example 2. A state transition table is given. Find optimal state assignment by using the guideline
method.

2

Highest priority: states with the same next state for a given
input.

Medium priority:
states that are next state of the same state.

Lowest priority:
States with the same output corresponding to the same
inputs.

Example 3. Draw a Mealy FSM for detecting binary string 0110 or 1010. The machine returns to
the reset state after each and every 4-bit sequence. Draw the state transition diagram on your own
as practice problem. The state transition diagram is given here. Find optimal state assignment by
using the guideline method.

4 State reduction by implication chart

Example 4. Design a Mealy FSM for detecting binary sequence 010 or 0110. The machine returns
to reset state after each and every 3-bit sequence. For now the state transition table is given. Reduce
the following state transition table

3

4

Two states S_i and S_j are equivalent if for each input their next state and outputs are
the same.

4.1 Implication chart Summary

The algorithms for state reduction using the implication chart method consists of the following
steps

1. Construct the implication chart, consisting of one square for each possible combination of
states taken two at a time.

2. For each square labeled by states Si and Sj , if the outputs of the states differ, mark the square
with an X; the states are not equivalent. Otherwise, they may be equivalent. Within the
square write implied pairs of equivalent next states for all input combinations.

3. Systematically advance through the squares of the implication chart. If the square labeled by
states Si, Sj contains an implied pair Sm, Sn and square Sm, Sn is marked with an X, then
mark Si, Sj with an X. Since Sm, Sn are not equivalent, neither are Si, Sj .

4. Continue executing Step 3 until no new squares are marked with an X.

5. For each remaining unmarked square Si, Sj , we can conclude that Si, Sj are equivalent.

References

[1] Randy Katz and Gaetano Barriello. Contemporary Logic Design. Prentice Hall, 2004.

Ask for reference PDF if you need it.

5

