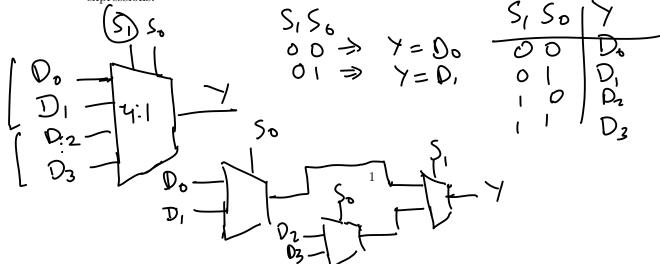
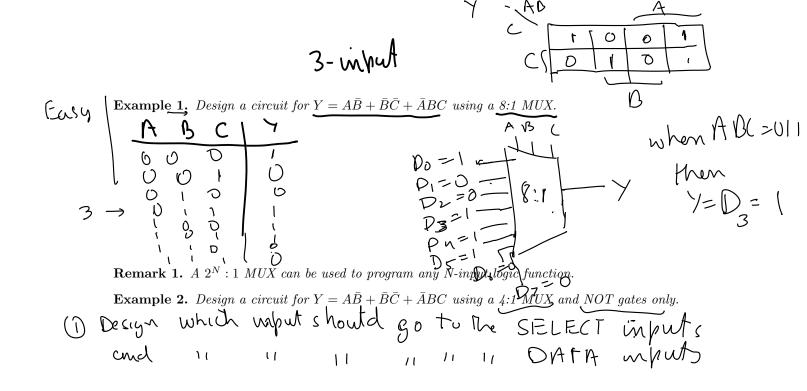

Sequential logic design

Vikas Dhiman for ECE275

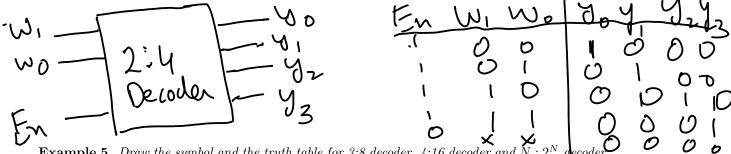

December 5, 2022

1 Objectives


- 1. Design combinational circuits using multiplexers and decoders
- 2 Design combinational circuit using multiplexers [1, Section 2.8.1] 2.6.2

Draw the symbol for a 4:1 MUX, an 8:1 MUX and a $2^N : 1 \text{ MUX}$ and write corresponding Boolean expressions.

only 1 mitims $Y = \overline{S_1} \overline{S_0} D_0$ can be true + 5, 5 D, at a time. + S, 5 D2 The monter That + 5,50 D3 is true, sélecte the data lin Minterms: $\overline{S_1} \overline{S_2}$, $\overline{S_1} S_2$, $\overline{S_2}$, $\overline{S$ The minterm that is true, selects the corresponding data line. 8:1 MUX Draw a symbol, write an expression and T How many select Rines 525,50 Y= 525, 50 Do Do . + 5, 5, 50 V, D, S.I MUX S, S, So Dy 05 01 **9**7 525,50 Sw-1. Sa $S_2 S_1$ 00 G 0 U \mathcal{O} Don



Remark 2. A 2^{N-1} : 1 MUX can be used to program any N-input logic function, if we use literals on the input side.

Example 3. Design a circuit for $Y = \overline{A}C + \overline{A}B + B\overline{D}$ using a 8:1 MUX and NOT gates only. Also design using 4:1 MUX and other gates. fewest gates.

3 Encoders and Decoders

Example 4. Draw the symbol and the truth table for 2:4 decoder. Also write the logic expressions.

Example 5. Draw the symbol and the truth table for 3:8 decoder, 4:16 decoder and $N: 2^N$ decoder. Also write the logic expressions.

~ (R) 5,50 Y=AB+BC+ABC . The input signals that occur in most implicants go to the select bits. B must connet to the sclect sign because B occurs 3 times in the implicants while A and C occur 2 times. AB O 2 3 goes to 0001 ID 1 (${}^{\circ}$ Ю SFLEC B CIGNO 4: \mathcal{D}_{z}^{2} 3 ß BC whe BC=00 (π) select 0 1 = 0 \ Ο t ٥ Y whe A= C ÍA B $0Y = A\overline{D}$ BC + ABC С $\mathcal{D}_{\delta} =$ when $D_1 = A - 4 = 1$ $D_3 = 0 - 7$ $D_3 = A$

ß BC0001 () ·ct (\mathcal{D}) ٥ t Ô 0 \mathcal{O} \triangleright when BC=00 C O A () $Y = f(A_1D) = 2$ A $Y = \overline{A} + \overline{D}$ \sim A when B(= 0 (D \overline{O} ß when Ą 0 3 - A++ \mathbb{O} (21 A (- AD Ь A+D $D_0 =$ D, = 4:1 A+ Đ, D2=-**۱** = A

Example 6. Design a circuit for a XOR gate using a 2:4 decoder and an OR gate.

Example 7. Design a circuit for $Y = A\overline{B} + \overline{B}\overline{C} + \overline{A}BC$ using a 3:8 decoder and an OR gate.

I

3.1 Encoders

Example 8. Draw symbol and truth table for a 4:2 priority encoder.

Example 9. Draw symbol and truth table for a 8:3 priority encoder.

References

^[1] Sarah L Harris and David Harris. *Digital design and computer architecture*. Morgan Kaufmann, 2022.

2:4 ve code . 3.8 Decoder Y o WZ ω_{1} ω_{1} Ēn - 47 En Wz W, Wa JO Y, ---J2 ·· J_= [-- 0 0 U \bigcirc $y_n = E_n \cdot w_2 \cdot w_1 \cdot w_0$ $U_5 = I_{2} \dots W_2 \dots W_1 \dots W_3$ mintern 5=1012 En. W2W, WO YK =

Use decoder to design court Fyb AB+AB XORgate JG ωD 02 En $J - Y_3$ 00 - Y,=AB-Yn=AB D 1-m -y_3 +AB

A D (c+c)->AIA BC こ + ÁBC 4 (())6 UN $C + 4 \overline{GC}$ A B 401 O 32! 8z 14 ω Jb KM 57 A 6 $w^{0} + w^{3}$ MY 4 15

Priority Encoder W_2 J 6 l 8:3 5 y y y. $W_2 W_1 W_0 IS$ -. $\overline{()}$ \times \times . ۲ **b** 0 -- ` 0 $\times x$ $\boldsymbol{\times}$ \mathcal{O} •• 0 0 () $\overline{()}$ X Û I ----X 0 | ____X \bigcirc $W_{7} =$