Number system and conversions (section 1.4 of textbook)

Vikas Dhiman for ECE275

September 2, 2022

6 Signed binary numbers

Signed numbers include both negative and positive numbers. There three common signed number representations

- 1. Sign magnitude representation
- 2. One's complement
- 3. Two's complement

6.1 Sign-magnitude representation

The Most significant (left most) bit (binary digit) represents sign (0 = + and 1 = -), the rest represent the magnitude. Example, a 5-bit number $(11010)_2$ in signed magnitude representation has the value of $(-1010)_2 = -10$. Note that +10 has to be represented by a leading 0 at the most significant bit (MSB) $+10 = (01010)_2$. Hence, the number of bits have to be specified.

Problem 5 • Write down all possible 4-digit binary numbers and corresponding decimal values if they are in signed magnitude format? What is the minimum and maximum value?

• What is the minimum and maximum value of n-digit signed binary number in sign-magnitude format?

4-dight Brians Decimal

$$0000 = +0$$
 $0000 = +1$
 $0000 = +1$
 $0000 = +2$
 $0000 = +3$
 $0100 = +4$
 $0100 = +5$
 $0110 = +5$
 $0110 = +7$
 $0110 = +7$
 $0110 = -0$
 $1000 = -0$
 $1000 = -2$
 $1000 = -4$
 $1100 = -5$
 $1100 = -5$
 $1100 = -5$
 $1110 = -5$
 $1110 = -5$
 $1110 = -76$ Min $-(2-1)$

6.2 One's complement negation

You can convert a positive number (say +10) to negative number by applying a negative sign in front of it (-(+10) = -10). It is more evident from taking negative of a negative number (-(-10) = +10). In case of sign-magnitude representation, the "negative operator" flips the sign bit. The next two signed number representations (1's complement and 2's complement) are designed around specific negative operator definitions.

Negate
$$13_{10} = 01101_2$$
 using 5-bit one's complement.

$$-13_{10} = -(01101)_{z}$$
$$= 10010_{z}$$

= 10

Negate -13_{10} using 5-bit one's complement.

$$-(-13) = -(10010)_{2}$$
$$= 0(101_{2})$$

6.3 One's complement binary numbers

In one's complement representation, the negative operation is obtained by flipping all the bits of the binary number. Example, a 5-bit one's complement of $+10 = (01010)_2$ is $(10101)_2 = -10$. Note that flipping bits is equivalent to subtracting the number from $(11111)_2$, hence the name. You can also confirm that double negative operator yields back the same number.

Problem 6 • Write down all possible 4-digit binary numbers and corresponding decimal values if they are in sign magnitude format? What is the minimum and maximum value?

4-bit is with ment?	is the minimum and max	imum value of n-digit signed binar		mple-
0000	Decimal	I's comple new	Bony	
; ;	7 (23-1)		n-hit	i's compl
1000	-7 -(23-1)	0111	Min	- (m-1-1)
1001	-6 -5	0110		-(2-1)
1010			Max	$+(2^{n-1}-1)$
				/
1110	1-0	0000		

Problem 7 Determine the decimal values of the following 1's complement 8-digit binary numbers

Problem 8 Convert the decimal numbers -17 and +23 into the 6-digit one's complement binary numbers and try adding them. What adjustments will you need to make to get the right result's $\hbox{\it (23-17=6) in binary representation},$ 010001 17,00 1 11 101110 010111 23 000110 000101 1110012 010111 -1 111001 101000 -6-23 =

6.4 Two's complement negation

In two's complement representation, the n-digit negative number is obtained by subtracting the positive number from 2^n . Example, two's complement of 5-digit binary number $+10 = (01010)_2$ is $2^5 - 10 = 22 = (11000)_2$. An easier algorithm to get two's complement goes via one's complement. Note that $(11111)_2 = 2^5 - 1$. We can get two's complement by adding 1 to one's complement. To get two's complement:

1. Flip all the bits. (Same as taking one's complement).

2. Add 1 to the number.

Negate
$$13_{10} \neq 01101_2$$
 using 5-bit two's complement.

2 - 13

() Flip 10010

2 Add 1 $(10011)_2 = -13$

Negate -13_{10} using 5-bit two's complement.

(a) Flip
$$01100$$

(b) Add $1 (01101)_2 = +13$

- 1. 01011110
- 2. 10010111

Problem 10 Convert the decimal numbers -17 and +23 into the 6-digit two's complement binary numbers and try adding them. What adjustments will you need to make to get the right result's (23-17=6) in binary representation.

Problem 11 Convert the decimal numbers 73, 23, -17, and -163 into signed 8-bit numbers in the following representations:

- 1. Sign and magnitude
- 2. 1's complement
- 3. 2's complement

Arithmetic overflow

Problem 12 Consider addition of 4-digit two's complement binary numbers

1.
$$1010_2 + 1101_2$$

$$2. 1011_2 + 1100_2$$

$$M\dot{m} = -8$$

$$Max = 7$$

In which of the two case overflow happens? Can you come up with a rule to "easily" detect overflow?

7 Binary coded decimal

In Binary coded decimal (BCD), each decimal digit is represented by 4 bits. For example, $1047 = (0001_0000_0100_0111)_{BCD}$. It is useful in input-output applications where the number has to be either displayed as decimal or received as decimal.

Problem 13 Convert 11, 23, 35, 57 and 103897 to BCD?

8 Gray code

A sequence of binary numbers where only one bit changes when the number increases by 1. It is helpful in applications like wheel encoders

Problem 14 Write all possible 3-bit binary numbers in gray-code