Vikas Dhiman
[email protected]
TA: Pascal Francis-Mezger
[email protected]
Row num | \(x_1\) | \(x_2\) | \(x_1 \cdot x_2\) |
---|---|---|---|
0 | 0 | 0 | 0 |
1 | 0 | 1 | 0 |
2 | 1 | 0 | 0 |
3 | 1 | 1 | 1 |
Row num | \(x_1\) | \(x_2\) | \(x_1 + x_2\) |
---|---|---|---|
0 | 0 | 0 | 1 |
1 | 0 | 1 | 1 |
2 | 1 | 0 | 1 |
3 | 1 | 1 | 0 |
Row num | \(x_1\) | \(\bar{x}_1\) |
---|---|---|
0 | 0 | 1 |
1 | 1 | 0 |
Row num | A | B | C | D | \(\bar{B}\) | g | h | k | f |
---|---|---|---|---|---|---|---|---|---|
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 |
1 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 |
2 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 |
3 | 0 | 0 | 1 | 1 | 1 | 0 | 1 | 0 | 0 |
4 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
5 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 1 |
6 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 0 |
7 | 0 | 1 | 1 | 1 | 0 | 0 | 1 | 0 | 0 |
8 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 0 |
9 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 |
10 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 0 | 0 |
11 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 0 |
12 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
13 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 1 |
14 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 0 |
15 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 0 | 0 |
Row num | A | B | C | D | f |
---|---|---|---|---|---|
0 | 0 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 1 | 1 |
2 | 0 | 0 | 1 | 0 | 0 |
3 | 0 | 0 | 1 | 1 | 0 |
4 | 0 | 1 | 0 | 0 | 0 |
5 | 0 | 1 | 0 | 1 | 1 |
6 | 0 | 1 | 1 | 0 | 0 |
7 | 0 | 1 | 1 | 1 | 0 |
8 | 1 | 0 | 0 | 0 | 0 |
9 | 1 | 0 | 0 | 1 | 0 |
10 | 1 | 0 | 1 | 0 | 0 |
11 | 1 | 0 | 1 | 1 | 0 |
12 | 1 | 1 | 0 | 0 | 0 |
13 | 1 | 1 | 0 | 1 | 1 |
14 | 1 | 1 | 1 | 0 | 0 |
15 | 1 | 1 | 1 | 1 | 0 |
List of rows where function is 1
\(m_0\) | \(\triangleq \bar{A} \bar{B} \bar{C} \bar{D} \) |
\(m_1\) | \(\triangleq \bar{A} \bar{B} \bar{C} D \) |
\(m_2\) | \(\triangleq \bar{A} \bar{B} C \bar{D} \) |
\(m_3\) | \(\triangleq \bar{A} \bar{B} C D \) |
\(m_4\) | \(\triangleq \bar{A} \bar{B} \bar{C} \bar{D} \) |
\(m_5\) | \(\triangleq \bar{A} \bar{B} \bar{C} D \) |
\(m_6\) | \(\triangleq \bar{A} \bar{B} C \bar{D} \) |
\(m_7\) | \(\triangleq \bar{A} \bar{B} C D \) |
\(m_8\) | \(\triangleq A \bar{B} \bar{C} \bar{D} \) |
\(m_9\) | \(\triangleq A \bar{B} \bar{C} D \) |
\(m_{10}\) | \(\triangleq A \bar{B} C \bar{D} \) |
\(m_{11}\) | \(\triangleq A \bar{B} C D \) |
\(m_{12}\) | \(\triangleq A B \bar{C} \bar{D} \) |
\(m_{13}\) | \(\triangleq A B \bar{C} D \) |
\(m_{14}\) | \(\triangleq A B C \bar{D} \) |
\(m_{15}\) | \(\triangleq A B C D \) |
Row num | A | B | C | D | f |
---|---|---|---|---|---|
0 | 0 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 1 | 1 |
2 | 0 | 0 | 1 | 0 | 0 |
3 | 0 | 0 | 1 | 1 | 0 |
4 | 0 | 1 | 0 | 0 | 0 |
5 | 0 | 1 | 0 | 1 | 1 |
6 | 0 | 1 | 1 | 0 | 0 |
7 | 0 | 1 | 1 | 1 | 0 |
8 | 1 | 0 | 0 | 0 | 0 |
9 | 1 | 0 | 0 | 1 | 0 |
10 | 1 | 0 | 1 | 0 | 0 |
11 | 1 | 0 | 1 | 1 | 0 |
12 | 1 | 1 | 0 | 0 | 0 |
13 | 1 | 1 | 0 | 1 | 1 |
14 | 1 | 1 | 1 | 0 | 0 |
15 | 1 | 1 | 1 | 1 | 0 |
List of rows where function is 0
\(M_0\) | \(\triangleq A + B + C + D \) |
\(M_1\) | \(\triangleq A + B + C + \bar{D}\) |
\(M_2\) | \(\triangleq A + B + \bar{C} + D \) |
\(M_3\) | \(\triangleq A + B + \bar{C} + \bar{D}\) |
\(M_4\) | \(\triangleq A + \bar{B} + C + D \) |
\(M_5\) | \(\triangleq A + \bar{B} + C + \bar{D} \) |
\(M_6\) | \(\triangleq A + \bar{B} + \bar{C} + D \) |
\(M_7\) | \(\triangleq A + \bar{B} + \bar{C} + \bar{D}\) |
\(M_8\) | \(\triangleq\bar{A} + B + \bar{C} + D \) |
\(M_9\) | \(\triangleq\bar{A} + B + \bar{C} + \bar{D}\) |
\(M_{10}\) | \(\triangleq\bar{A} + B + \bar{C} + D \) |
\(M_{11}\) | \(\triangleq\bar{A} + B + \bar{C} + \bar{D}\) |
\(M_{12}\) | \(\triangleq\bar{A} + \bar{B} + \bar{C} + D \) |
\(M_{13}\) | \(\triangleq\bar{A} + \bar{B} + \bar{C} + \bar{D} \) |
\(M_{14}\) | \(\triangleq\bar{A} + \bar{B} + \bar{C} + D \) |
\(M_{15}\) | \(\triangleq\bar{A} + \bar{B} + \bar{C} + \bar{D}\) |
\(\bar{x}_1\) | \(x_1\) | |
---|---|---|
\(\bar{x}_2\) | 0 | 0 |
\(x_2\) | 0 | 1 |
\(\bar{x}_1\) | \(x_1\) | |
---|---|---|
\(\bar{x}_2\) | 0 | 1 |
\(x_2\) | 1 | 1 |
\(\bar{x}_1\) | \(x_1\) |
---|---|
1 | 0 |
Row num | A | B | C | D | f |
---|---|---|---|---|---|
0 | 0 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 1 | 1 |
2 | 0 | 0 | 1 | 0 | 0 |
3 | 0 | 0 | 1 | 1 | 0 |
4 | 0 | 1 | 0 | 0 | 0 |
5 | 0 | 1 | 0 | 1 | 1 |
6 | 0 | 1 | 1 | 0 | 0 |
7 | 0 | 1 | 1 | 1 | 0 |
8 | 1 | 0 | 0 | 0 | 0 |
9 | 1 | 0 | 0 | 1 | 0 |
10 | 1 | 0 | 1 | 0 | 0 |
11 | 1 | 0 | 1 | 1 | 0 |
12 | 1 | 1 | 0 | 0 | 0 |
13 | 1 | 1 | 0 | 1 | 1 |
14 | 1 | 1 | 1 | 0 | 0 |
15 | 1 | 1 | 1 | 1 | 0 |
\(\bar{A}\) | \(A \) | ||||
---|---|---|---|---|---|
\(\bar{B}\) | \(B \) | \(\bar{B}\) | |||
\(\bar{C}\) | \(\bar{D}\) | \(m_0\) | \(m_4\) | \(m_{12}\) | \(m_8\) |
\(D\) | \(m_1\) | \(m_5\) | \(m_{13}\) | \(m_9\) | |
\(C\) | \(m_3\) | \(m_7\) | \(m_{15}\) | \(m_{11}\) | |
\(\bar{D}\) | \(m_2\) | \(m_6\) | \(m_{14}\) | \(m_{10}\) |
Row num | A | B | C | D | f |
---|---|---|---|---|---|
0 | 0 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 1 | 1 |
2 | 0 | 0 | 1 | 0 | 0 |
3 | 0 | 0 | 1 | 1 | 0 |
4 | 0 | 1 | 0 | 0 | 0 |
5 | 0 | 1 | 0 | 1 | 1 |
6 | 0 | 1 | 1 | 0 | 0 |
7 | 0 | 1 | 1 | 1 | 0 |
8 | 1 | 0 | 0 | 0 | 0 |
9 | 1 | 0 | 0 | 1 | 0 |
10 | 1 | 0 | 1 | 0 | 0 |
11 | 1 | 0 | 1 | 1 | 0 |
12 | 1 | 1 | 0 | 0 | 0 |
13 | 1 | 1 | 0 | 1 | 1 |
14 | 1 | 1 | 1 | 0 | 0 |
15 | 1 | 1 | 1 | 1 | 0 |
\(\bar{A}\) | \(A \) | ||||
---|---|---|---|---|---|
\(\bar{B}\) | \(B \) | \(\bar{B}\) | |||
\(\bar{C}\) | \(\bar{D}\) | 0 | 0 | 0 | 0 |
\(D\) | 1 | 1 | 1 | 0 | |
\(C\) | 0 | 0 | 0 | 0 | |
\(\bar{D}\) | 0 | 0 | 0 | 0 |
\(\bar{A}\) | \(A \) | ||||
---|---|---|---|---|---|
\(\bar{B}\) | \(B \) | \(\bar{B}\) | |||
\(\bar{C}\) | \(\bar{D}\) | 0 | 0 | 0 | 0 |
\(D\) | 1 | 1 | 1 | 0 | |
\(C\) | 0 | 0 | 0 | 0 | |
\(\bar{D}\) | 0 | 0 | 0 | 0 |
Row num | A | B | C | D | \(\bar{A}\bar{C}D\) | \(B\bar{C}D\) | f |
---|---|---|---|---|---|---|---|
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 1 | 1 | 0 | 1 |
2 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
3 | 0 | 0 | 1 | 1 | 0 | 0 | 0 |
4 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
5 | 0 | 1 | 0 | 1 | 1 | 1 | 1 |
6 | 0 | 1 | 1 | 0 | 0 | 0 | 0 |
7 | 0 | 1 | 1 | 1 | 0 | 0 | 0 |
8 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
9 | 1 | 0 | 0 | 1 | 0 | 0 | 0 |
10 | 1 | 0 | 1 | 0 | 0 | 0 | 0 |
11 | 1 | 0 | 1 | 1 | 0 | 0 | 0 |
12 | 1 | 1 | 0 | 0 | 0 | 0 | 0 |
13 | 1 | 1 | 0 | 1 | 0 | 1 | 1 |
14 | 1 | 1 | 1 | 0 | 0 | 0 | 0 |
15 | 1 | 1 | 1 | 1 | 0 | 0 | 0 |
Row num | A | B | C | D | f |
---|---|---|---|---|---|
0 | 0 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 1 | 1 |
2 | 0 | 0 | 1 | 0 | 0 |
3 | 0 | 0 | 1 | 1 | 0 |
4 | 0 | 1 | 0 | 0 | 0 |
5 | 0 | 1 | 0 | 1 | 1 |
6 | 0 | 1 | 1 | 0 | 0 |
7 | 0 | 1 | 1 | 1 | 0 |
8 | 1 | 0 | 0 | 0 | 0 |
9 | 1 | 0 | 0 | 1 | 0 |
10 | 1 | 0 | 1 | 0 | 0 |
11 | 1 | 0 | 1 | 1 | 0 |
12 | 1 | 1 | 0 | 0 | 0 |
13 | 1 | 1 | 0 | 1 | 1 |
14 | 1 | 1 | 1 | 0 | 0 |
15 | 1 | 1 | 1 | 1 | 0 |
Row num | A | B | C | D | f |
---|---|---|---|---|---|
0 | 0 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 1 | 1 |
2 | 0 | 0 | 1 | 0 | 0 |
3 | 0 | 0 | 1 | 1 | 0 |
4 | 0 | 1 | 0 | 0 | 0 |
5 | 0 | 1 | 0 | 1 | 1 |
6 | 0 | 1 | 1 | 0 | 0 |
7 | 0 | 1 | 1 | 1 | 0 |
8 | 1 | 0 | 0 | 0 | 0 |
9 | 1 | 0 | 0 | 1 | 0 |
10 | 1 | 0 | 1 | 0 | 0 |
11 | 1 | 0 | 1 | 1 | 0 |
12 | 1 | 1 | 0 | 0 | 0 |
13 | 1 | 1 | 0 | 1 | 1 |
14 | 1 | 1 | 1 | 0 | 0 |
15 | 1 | 1 | 1 | 1 | 0 |