Design of three-way light control
Soln: three-way light control
Truth table
Row | x | y | z |
f |
0 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 1 | 1 |
2 | 0 | 1 | 0 | 1 |
3 | 0 | 1 | 1 | 0 |
4 | 1 | 0 | 0 | 1 |
5 | 1 | 0 | 1 | 0 |
6 | 1 | 1 | 0 | 0 |
7 | 1 | 1 | 1 | 1 |
f = \sum m (1, 2, 4, 7)
\\= \bar{x} \bar{y} z + \bar{x} y \bar{z} + x \bar{y} \bar{z} + xyz
| \bar{x} | x |
| \bar{y} | y | \bar{y} |
\bar{z} |
0 | 1 | 0 | 1 |
z |
1 | 0 | 1 | 0 |
f = \sum m (1, 2, 4, 7)
\\= \bar{x} \bar{y} z + \bar{x} y \bar{z} + x \bar{y} \bar{z} + xyz
Design a multiplexer
Soln: multiplexer
Row | s | x_1 | x_2 |
f |
0 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 1 | 0 |
2 | 0 | 1 | 0 | 1 |
3 | 0 | 1 | 1 | 1 |
4 | 1 | 0 | 0 | 0 |
5 | 1 | 0 | 1 | 1 |
6 | 1 | 1 | 0 | 0 |
7 | 1 | 1 | 1 | 1 |
f = \sum m(2, 3, 5, 7)
| \bar{s} | s |
| \bar{x_1} | x_1 | \bar{x_1} |
\bar{x_2} |
0 | 1 | 0 | 0 |
x_2 |
0 | 1 | 1 | 1 |
f = sx_1 + \bar{s} x_2
f = sx_1 + \bar{s} x_2
DeMorgan's theorem
- \overline{x \cdot y} = \bar{x} + \bar{y}
- \overline{x + y} = \bar{x} \cdot \bar{y}
DeMorgan's theorem
- \overline{x \cdot y} = \bar{x} + \bar{y}
- \overline{x + y} = \bar{x} \cdot \bar{y}
Prove that for two variable function
\overline{m}_0 = M_0
Soln: Prove that for two variable function
\bar{m}_0 = M_0
\begin{align}
m_0 &= \bar{x}_1 \bar{x}_2 & \text{ by definition of } m_0
\\
\implies \bar{m}_0 &= \overline{\bar{x}_1 \bar{x}_2} &
\\
&= \bar{\bar{x}}_1 + \bar{\bar{x}}_2 & \text{ by DeMorgan's theorem }
\\
&= x_1 + x_2 = M_0 & \text{ by definition of } M_0
\end{align}
Prove that
If x + y = 1 and xy = 0 then \bx = y
Soln: Prove that
If x + y = 1 and xy = 0 then \bx = y
\begin{align}
&x + y = 1
\\
&\implies x \bx + y \bx = \bx & \text{ multiply both sides by } \bx
\\
&\implies y \bx = \bx & \because x \bx = 0
\\
&\implies y \bx + y x = \bx + y x & \text{ add } y x \text{ to both sides }
\\
&\implies y (\bx + x) = \bx & \text{by dist. prop. and } xy = y x = 0
\\
&\implies y = \bx &
\end{align}
Prove that for three variable function
\sum m(0, 2, 3, 7) = \prod M(1, 4, 5, 6)
Soln: Prove that for three variable function
\begin{align}
\sum m(0, 2, 3, 7) &= m_0 + m_2 + m_3 + m_7
\\
&= \overline{ m_1 + m_4 + m_5 + m_6}
\\
&= \bar{m}_1 \bar{m}_4 \bar{m}_5 \bar{m}_6
\\
&= M_1 M_4 M_5 M_6
\\
&=\prod M(1, 4, 5, 6)
\end{align}
Find the minimum cost expression for
f(x, y, z) = \sum m(0, 2, 3, 4, 5, 6, 7)
Solution
\begin{align}
f &= \sum m(0, 2, 3, 4, 5, 6, 7)
\\
&= \overline{\sum m(1)}
\\
&= \prod M(1)
\\
&= (x + y + \bz)
\end{align}
SOP in terms of NAND gate
POS in terms of NOR gate