ECE 275: Building blocks

Website: https://vikasdhiman.info/ECE275-Sequential-Logic/

\[ \newcommand{\bx}{\bar{x}} \newcommand{\by}{\bar{y}} \newcommand{\bz}{\bar{z}} \newcommand{\bA}{\bar{A}} \newcommand{\bB}{\bar{B}} \newcommand{\bC}{\bar{C}} \newcommand{\bD}{\bar{D}} \newcommand{\bE}{\bar{E}} \]

Multiplexers (MUX)

Three state buffers

3-to-8 Decoders

ROM

Encoder

Priority Encoder

Circuits using Multiplexer

\( w_1 \)\( w_0 \)\( f \)
0 0 0
0 1 1
1 0 1
1 1 0

Shannon's expansion theorem

\[ f(x_1, \dots, x_i, \dots, x_n) = x_i f(x_1, \dots, 1, \dots, x_n) + \bx_i f(x_1, \dots, 0, \dots, x_n) \]
\[ f(x_1, \dots, x_n) = x_i f_{x_i}(x_1, \dots, x_n) + \bx_i f_{\bx_i}(x_1, \dots, x_n) \]

Design a cicuit using 4:1 MUX

\(\bar{w}_1\) \(w_1 \)
\(\bar{w}_2\) \(w_2 \) \(\bar{w}_2\)
\(\bar{w}_3\)\(\bar{w}_4\) 0 1 1 0
\(w_4\) 0 1 0 1
\(w_3\) 1 1 0 1
\(\bar{w}_4\) 1 1 1 0

Design a cicuit using 4:1 MUX

\(\bar{w}_1\) \(w_1 \)
\(\bar{w}_2\) \(w_2 \) \(\bar{w}_2\)
\(\bar{w}_3\)\(\bar{w}_4\) 0 1 1 0
\(w_4\) 0 1 0 1
\(w_3\) 1 1 0 1
\(\bar{w}_4\) 1 1 1 0

Design using 3-to-8 Decoder

Row \( w_2 \)\( w_1 \)\( w_0 \)\( f \)
0 0 0 0 0
1 0 0 1 1
2 0 1 0 1
3 0 1 1 0
4 1 0 0 0
5 1 0 1 1
6 1 1 0 0
7 1 1 1 0

Thanks, Questions, Feedback?

https://vikasdhiman.info/ECE275-Sequential-Logic/