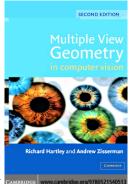
ECE 417/598: Image formation

Vikas Dhiman

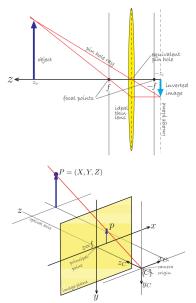
Feb 7, 2022

Additional reference

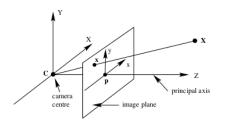


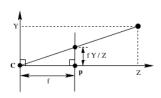
Chapter 6, 7, 8 of CAMBRIDGE WWW.cambridge.org/9780521540513

¹Lookup on libgen.rs

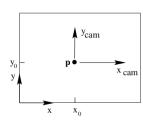


²Chapter 11. Corke.

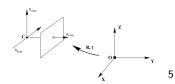




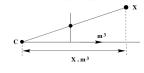
3



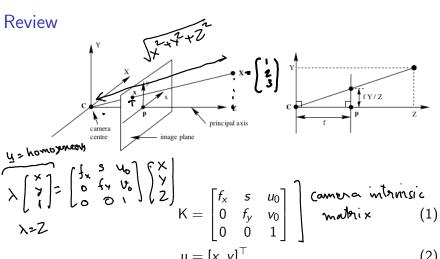
⁴Chapter 6. Hartley and Zisserman



⁵Chapter 6. Hartley and Zisserman



⁶Chapter 6. Hartley and Zisserman



$$\mathbf{u} = [x, y]^{\top} \tag{2}$$

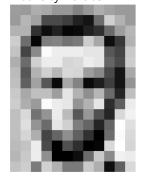
$$\underline{X} = [X, Y, Z]^{\top} \tag{3}$$

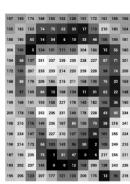
$$\underline{\mathbf{u}} = [\mathbf{u}^\top, \mathbf{1}]^\top \tag{4}$$

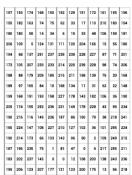
$$\underline{\mathbf{u}} = K\underline{\mathbf{X}} \tag{5}$$

A numerical example

Image is a grid of numbers. The vale in the grid represents intensity values.







A Depth Image is an array of numbers. The value in the grid represents intensity values.

(0,0)

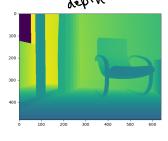
(1,0)

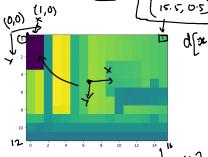
(1,0)

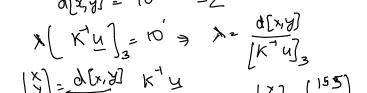
(1,0)

(1,0)

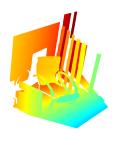
(1,0)

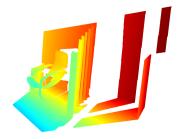






From what we have learned, how can we convert the depth image to a point cloud?





Pseudo-Inverse
$$A \quad A^{\frac{1}{p_{1}}} \qquad u = \underbrace{K[R_{W} \mid t_{W}] \times A}_{X = p_{1}} \xrightarrow{X = p_{2}} \underbrace{X = p_{2}}_{X}$$

$$AA^{\dagger}A = A$$

Least square solution

$$A \times = b$$

$$X = A^{-1}b$$

$$X = A^{-1$$

$$b^{T}Ax = x^{T}A^{T}b$$

$$x \in \mathbb{R}^{m \times n}$$

$$x \in \mathbb{R}^{m \times n}$$

$$= x^{T}A^{T}b$$

$$= x^{T}A^{T}b$$

$$x \in \mathbb{R}^{m \times n}$$

$$= x^{T}A^{T}b$$

$$A^{T}A^{X} = A^{T}b \Rightarrow \overset{X}{=} (A^{T}A)^{T}A^{T}b$$

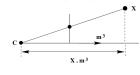
$$\overset{X}{=} \underbrace{(A^{T}A)^{T}A^{T}b}$$

Fat maltrix on undertermined system
$$\begin{pmatrix}
\alpha_{11} & \alpha_{12} & \alpha_{13} \\
\alpha_{21} & \alpha_{22} & \alpha_{23}
\end{pmatrix}
\begin{pmatrix}
\times_{1} \\
\times_{2} \\
\times_{3}
\end{pmatrix} = \begin{pmatrix}
b_{1} \\
b_{2}
\end{pmatrix}$$

 $\underline{x} = A^{\dagger}b$

will need lagrange multiplier. A topic in optimization $\begin{array}{cccc}
min & ||x| & ||_{2} \\
x & s.t & Ax = D
\end{array}$

 $x = \underbrace{A^{T}(AA^{T})^{T}b}_{A^{T}}$ skipping this KKT condition Points as rays: aka Prospective geometry



⁷Chapter 6. Hartley and Zisserman

Vanishing Point



Vanishing Point

