ECE 417/598: Null space, Singular Value Decompsition

Vikas Dhiman.

Feb 28, 2022

Homogeneous representation of lines

$$\mathbb{P}^{2} = \mathbb{R}^{3} - \{(0,0,0)^{\top}\} \qquad \text{7c GM}^{3} \xrightarrow{\times = \lambda \times} A \neq 0$$

$$A + by + 1.c = 0$$

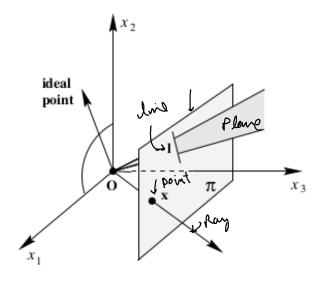
$$I = \begin{bmatrix} a \\ b \\ c \end{bmatrix} \qquad \text{200F} \qquad \begin{bmatrix} 2a \\ 2b \\ 2c \end{bmatrix}$$

$$\mathbf{x} = \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

The point $\mathbf{x} \in \mathbb{P}^2$ lies on a line \mathbf{I} if and only if

$$\boldsymbol{I}^{\top}\boldsymbol{x}=0$$

Points are rays and lines are planes



Intersection of lines

Two line \mathbf{I}_1 and \mathbf{I}_2 intersect at $\mathbf{x} \in \mathbb{P}^2$

$$x = I_1 \times I_2$$

$$\mathcal{L}_{1}^{7} \times = 0$$

$$\mathcal{L}_{2}^{7} \times = 0$$

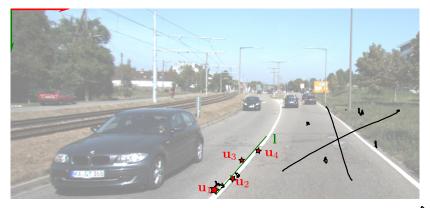
Line joining points

Two point \mathbf{x}_1 and \mathbf{x}_2 form a $\mathbf{I} \in \mathbb{P}^2$

$$I = \mathbf{x}_1 \times \mathbf{x}_2$$

$$Q \qquad \qquad Q^{\mathsf{T}} \mathbf{x}_1 = 0$$

$$\mathbf{x}_2 \qquad \qquad 0^{\mathsf{T}} \mathbf{x}_2 = 0$$



$$\mathbf{u}_{1} = \begin{bmatrix} 100, 98, 1 \end{bmatrix}^{\top}$$

$$\mathbf{u}_{2} = \begin{bmatrix} 105, 95, 1 \end{bmatrix}^{\top}$$

$$\mathbf{u}_{3} = \begin{bmatrix} 107, 90, 1 \end{bmatrix}^{\top}$$

$$\mathbf{u}_{4} = \begin{bmatrix} 110, 85, 1 \end{bmatrix}^{\top}$$

$$\mathbf{u}_{5} = \begin{bmatrix} 107, 90, 1 \end{bmatrix}^{\top}$$

Find the line I such that it is the "closest line" passing through u_1, \ldots, u_4 .

$$U = \begin{bmatrix} \mathbf{u}_{2}^{2} \\ \mathbf{u}_{3}^{\top} \\ \mathbf{u}_{4}^{\top} \end{bmatrix}$$

$$\mathbf{v}_{3}^{\top} \mathbf{l} = 0$$

$$\mathbf{v}_{1}^{\top} \mathbf{l} = 0$$

$$\mathbf{v}_{2}^{\top} \mathbf{l} = 0$$

$$\mathbf{v}_{3}^{\top} \mathbf{l} = 0$$

$$\mathbf{v}_{4}^{\top} \mathbf{l} = 0$$

$$\mathbf{v}_{5}^{\top} \mathbf{l} = 0$$

$$\mathbf{v}_{1}^{\top} \mathbf{l} = 0$$

$$\mathbf{v}_{2}^{\top} \mathbf{l} = 0$$

$$\mathbf{v}_{3}^{\top} \mathbf{l} = 0$$

$$\mathbf{v}_{4}^{\top} \mathbf{l} = 0$$

$$\mathbf{v}_{5}^{\top} \mathbf{l} = 0$$

$$\mathbf{v}_{6}^{\top} \mathbf{l} = 0$$

$$\mathbf{v}_{7}^{\top} \mathbf{l} = 0$$

$$\mathbf{v}_{1}^{\top} \mathbf{l} = 0$$

$$\mathbf{v}_{2}^{\top} \mathbf{l} = 0$$

$$\mathbf{v}_{3}^{\top} \mathbf{l} = 0$$

$$\mathbf{v}_{4}^{\top} \mathbf{l} = 0$$

$$\mathbf{v}_{5}^{\top} \mathbf{l} = 0$$

$$\mathbf{v}_{6}^{\top} \mathbf{l} = 0$$

$$\mathbf{v}_{7}^{\top} \mathbf{l} = 0$$

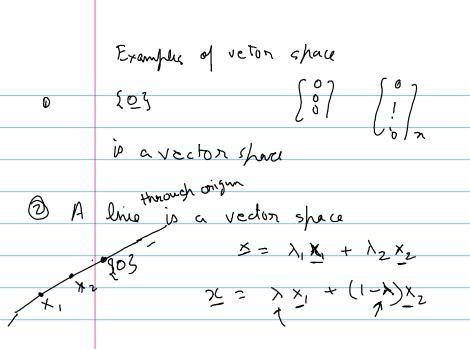
$$\mathbf{v}_{7}^{\top} \mathbf{l} = 0$$

$$\mathbf{v}_{7}^{\top} \mathbf{l} = 0$$

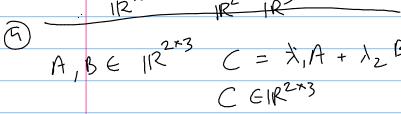
$$\mathbf{v}_{7}^{\top} \mathbf{l} = 0$$

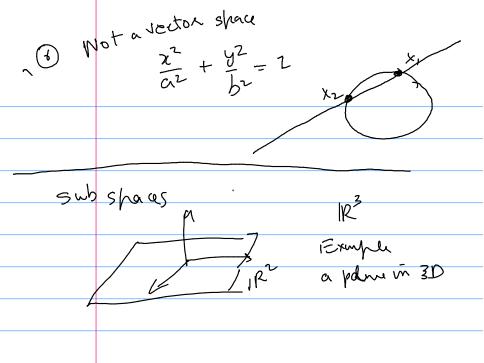
$$\mathbf{v}_{8}^{\top} \mathbf{l} = 0$$

4,Tl=0



(3) A plense through origina
is a vector space
$$x = ax, +bxz + bxz + bxz$$





Column space of a matrix AEIRMXX Column shave = x, a, +... + n qn spanned

AERMXN XEIRⁿ bEIRⁿ AX=b Column
Set of all possible b with a nexact

GIRM solution Set of all possibl x such that Ax =0 C 1R2

The column space (also called the range) of matrix $A \in \mathbb{R}^{m \times n}$, denoted by $\mathcal{R}(A)$ is defined as the set of all vectors $\mathbf{b} \in \mathbb{R}^m$ that can be generated by $\mathbf{b} = A\mathbf{x}$ where $\mathbf{x} \in \mathbb{R}^n$, that is,

$$\mathcal{R}(A) = \{ \mathbf{b} \mid \mathbf{b} = A\mathbf{x} \text{ for all } \mathbf{x} \in \mathbb{R}^n \}. \tag{1}$$

The nullspace of $A \in \mathbb{R}^{m \times n}$ is defined as the set of all vectors $\mathbf{x} \in \mathbb{R}^n$ such that $A\mathbf{x} = \mathbf{0}_m$. In other words,

$$\mathcal{N}(A) = \{ \mathbf{x} \in \mathbb{R}^n \mid \mathbf{0}_m = A\mathbf{x} \}. \tag{2}$$

The task of finding the column space or the null space is the task of finding the minimal set of vectors that *span* the vector spaces $\mathcal{R}(A)$ or $\mathcal{N}(A)$ respectively.

Find the $\mathcal{R}(A)$ and $\mathcal{N}(A)$ of the matrix A

Find the
$$\mathcal{R}(A)$$
 and $\mathcal{N}(A)$ of the matrix A

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 2 & 4 & 6 \end{bmatrix} = \begin{bmatrix} \mathbf{r}_{1}^{\top} \\ \mathbf{r}_{2}^{\top} \\ \mathbf{r}_{3}^{\top} \end{bmatrix} \implies A \times = \begin{bmatrix} b_{1} \\ b_{2} \\ b_{3} \end{bmatrix}$$

$$0 \quad \text{The proof of the matrix } A$$

$$0 \quad \text{The proof of the matrix } A$$

$$0 \quad \text{The proof of the matrix } A$$

$$0 \quad \text{The proof of the matrix } A$$

$$0 \quad \text{The proof of the matrix } A$$

$$0 \quad \text{The proof of the matrix } A$$

$$0 \quad \text{The proof of the matrix } A$$

$$0 \quad \text{The proof of the matrix } A$$

$$0 \quad \text{The proof of the matrix } A$$

$$0 \quad \text{The proof of the matrix } A$$

$$0 \quad \text{The proof of the matrix } A$$

$$0 \quad \text{The proof of the matrix } A$$

$$0 \quad \text{The proof of the matrix } A$$

$$0 \quad \text{The proof of the matrix } A$$

$$0 \quad \text{The proof of the matrix } A$$

$$0 \quad \text{The proof of the matrix } A$$

$$0 \quad \text{The proof of the matrix } A$$

$$0 \quad \text{The proof of the matrix } A$$

$$0 \quad \text{The proof of the matrix } A$$

$$0 \quad \text{The proof of the matrix } A$$

$$0 \quad \text{The proof of the matrix } A$$

$$0 \quad \text{The proof of the matrix } A$$

$$0 \quad \text{The proof of the matrix } A$$

$$0 \quad \text{The proof of the matrix } A$$

$$0 \quad \text{The proof of the matrix } A$$

$$0 \quad \text{The proof of the matrix } A$$

$$0 \quad \text{The proof of the matrix } A$$

$$0 \quad \text{The proof of the matrix } A$$

$$0 \quad \text{The proof of the matrix } A$$

$$0 \quad \text{The proof of the matrix } A$$

$$0 \quad \text{The proof of the matrix } A$$

$$0 \quad \text{The proof of the matrix } A$$

$$0 \quad \text{The proof of the matrix } A$$

$$0 \quad \text{The proof of the matrix } A$$

$$0 \quad \text{The proof of the matrix } A$$

$$0 \quad \text{The proof of the matrix } A$$

$$0 \quad \text{The proof of the matrix } A$$

$$0 \quad \text{The proof of the matrix } A$$

$$0 \quad \text{The proof of the matrix } A$$

$$0 \quad \text{The proof of the matrix } A$$

$$0 \quad \text{The proof of the matrix } A$$

$$0 \quad \text{The proof of the matrix } A$$

$$0 \quad \text{The proof of the matrix } A$$

$$0 \quad \text{The proof of the matrix } A$$

$$0 \quad \text{The proof of the matrix } A$$

$$0 \quad \text{The proof of the matrix } A$$

$$0 \quad \text{The proof of the matrix } A$$

$$0 \quad \text{The proof of the matrix } A$$

$$0 \quad \text{The proof of the matrix } A$$

$$0 \quad \text{The proof of the matrix } A$$

$$0 \quad \text{The proof of the matrix } A$$

$$0 \quad \text{The proof of the matrix$$

$$h_3^T = h_3^T - 2 h_1^T$$

$$\begin{pmatrix} 1 & 2 & 3 \\ 0 & -3 & -1 \\ 0 & 0 & 0 \end{pmatrix} \times \begin{pmatrix} x_1 \\ y_2 \\ z \\ z \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2 - 4b_1 \\ b_3 - 2b_1 \end{pmatrix}$$
Substaces = separasent in terms of

$$\begin{pmatrix} 1 & 2 & 3 \\ 0 & -3 & 4 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = 0$$

$$x_1 + 2x_2 + 3x_3 = 0$$

 $-3\times_2-6\times_2=0$

X2=-2×3

x, -4x3+3x3=0

ブィニ ツュ

456=

$$A = \begin{pmatrix} 1 & 0 & 0 \\ 4 & 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 \\ 0 & -3 & -6 \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 0 & 0 \\ 4 & 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 \\ 0 & -3 & -6 \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 0 & 0 \\ 4 & 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & -3 & 0 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 \\ 0 & 0 & 0 \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 0 & 0 \\ 2 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & -3 & 0 \end{pmatrix} \begin{pmatrix} 1 & 2 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 0 & 0 \\ 4 & 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 0 & -3 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 2 \\ 4 & 5 \\ 2 & 0 & 1 \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 0 & 0 \\ 2 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 0 & -3 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 2 \\ 4 & 5 \\ 2 & 0 \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 0 & 0 \\ 2 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 0 & -3 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 2 \\ 4 & 5 \\ 2 & 0 \end{pmatrix}$$

Eigenvalues and Eigenvectors

For a square matrix A, the λ_i and \mathbf{x}_i that satisfy the following equation are called eigenvalues and eigenvectors respectively.

$$A\mathbf{x} = \lambda \mathbf{x} \text{ or } (A - \lambda I)\mathbf{x} = 0$$
 (3)

 λ is chosen to ensure that $A - \lambda I$ has null space, hence, characteristic equation

$$\det(A - \lambda I) = 0 \tag{4}$$

For symmetrix matrix $A = A^{\top}$, eigenvalues are real, and eigenvectors are orthonormal,

$$A[\mathbf{x}_1, \dots, \mathbf{x}_n] = [\mathbf{x}_1, \dots, \mathbf{x}_n] \begin{bmatrix} \lambda_1 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & \lambda_n \end{bmatrix}$$
 (5)

$$AS = S\Lambda \tag{6}$$

if
$$A = A^{\top}$$
 then $A = S\Lambda S^{\top}$ (7)

We introduce two vocabulary words to describe what we have seen. Let A be a square matrix and a scalar.

▶ The geometric multiplicity of is the dimension of the -eigenspace. In other words, $\dim \mathcal{N}((AI))$. ■ The algebraic multiplicity of is the number of times (t) occurs as a factor of $\det(AtI)$.

Numerical example

Singular Value Decomposition (SVD)

$$A = U \begin{bmatrix} \Sigma & 0 \\ 0 & 0 \end{bmatrix} V^{\top}$$

$$A^{\top}A = V\Sigma^{2}V^{-1}$$

$$A^{\top}A\mathbf{v}_{i} = \lambda_{i}\mathbf{v}_{i}$$

$$AV = U \begin{bmatrix} \Sigma & 0 \\ 0 & 0 \end{bmatrix}$$

$$U^{+} = \Sigma^{-1}AV^{+}$$

$$(8)$$

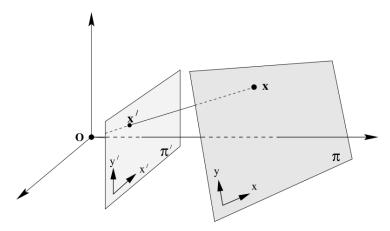
$$\lambda_{i} = \sigma_{i}^{2}$$

$$(10)$$

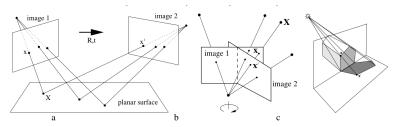
$$(11)$$

Numerical example

Homography



Examples of Homography



Computing Homography

Computing Homography

Solving for Homography derivation

Direct Linear Transformation (DLT) algorithm

Objective

Given $n \geq 4$ 2D to 2D point correspondences $\{\mathbf{x}_i \leftrightarrow \mathbf{x}_i'\}$, determine the 2D homography matrix H such that $\mathbf{x}_i' = \mathrm{H}\mathbf{x}_i$.

Algorithm

- (i) For each correspondence x_i ↔ x'_i compute the matrix A_i from (4.1). Only the first two rows need be used in general.
- (ii) Assemble the $n \ 2 \times 9$ matrices A_i into a single $2n \times 9$ matrix A.
- (iii) Obtain the SVD of A (section A4.4(p585)). The unit singular vector corresponding to the smallest singular value is the solution h. Specifically, if A = UDV^T with D diagonal with positive diagonal entries, arranged in descending order down the diagonal, then h is the last column of V.
- (iv) The matrix H is determined from \mathbf{h} as in (4.2).

2D homography

Given a set of points $\mathbf{x}_i \in \mathbb{P}^2$ and a corresponding set of points $\mathbf{x}_i' \in \mathbb{P}^2$, compute the projective transformation that takes each \mathbf{x}_i to \mathbf{x}_i' . In a practical situation, the points \mathbf{x}_i and \mathbf{x}_i' are points in two images (or the same image), each image being considered as a projective plane \mathbb{P}^2 .

3D to 2D camera projection matrix estimation

Given a set of points X_i in 3D space, and a set of corresponding points x_i in an image, find the 3D to 2D projective P mapping that maps X_i to $x_i = PX_i$.