ECE 417/598: Null space, Singular Value Decompsition

Vikas Dhiman.

March 2, 2022

Homogeneous representation of lines

$$\mathbb{P}^{2} = \mathbb{R}^{3} - \{(0, 0, 0)^{\top}\}$$
$$ax + by + 1.c = 0$$
$$\mathbf{I} = \begin{bmatrix} a \\ b \\ c \end{bmatrix}$$
$$\mathbf{x} = \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

The point $\textbf{x} \in \mathbb{P}^2$ lies on a line I if and only if

$$\mathbf{I}^{\top}\mathbf{x} = \mathbf{0}$$

Points are rays and lines are planes

Intersection of lines

Two line \textbf{I}_1 and \textbf{I}_2 intersect at $\textbf{x} \in \mathbb{P}^2$

 $\textbf{x} = \textbf{I}_1 \times \textbf{I}_2$

Line joining points

Two point \textbf{x}_1 and \textbf{x}_2 form a $\textbf{I} \in \mathbb{P}^2$

 $\mathbf{I} = \mathbf{x}_1 \times \mathbf{x}_2$

$$\begin{split} \underline{\mathbf{u}}_1 &= [100, 98, 1]^\top \\ \underline{\mathbf{u}}_2 &= [105, 95, 1]^\top \\ \underline{\mathbf{u}}_3 &= [107, 90, 1]^\top \\ \underline{\mathbf{u}}_4 &= [110, 85, 1]^\top \end{split}$$

Find the line I such that it is the "closest line" passing through u_1, \ldots, u_4 .

$$U = \begin{bmatrix} \mathbf{u}_1^\top \\ \mathbf{u}_2^\top \\ \mathbf{u}_3^\top \\ \mathbf{u}_4^\top \end{bmatrix}$$

We want to solve for ${\boldsymbol{\mathsf{I}}}$ such that

$$U\mathbf{I} = 0$$

The column space (also called the range) of matrix $A \in \mathbb{R}^{m \times n}$, denoted by $\mathcal{R}(A)$ is defined as the set of all vectors $\mathbf{b} \in \mathbb{R}^m$ that can be generated by $\mathbf{b} = A\mathbf{x}$ where $\mathbf{x} \in \mathbb{R}^n$, that is,

$$\mathcal{R}(A) = \{ \mathbf{b} \mid \mathbf{b} = A\mathbf{x} \text{ for all } \mathbf{x} \in \mathbb{R}^n \}.$$
(1)

The nullspace of $A \in \mathbb{R}^{m \times n}$ is defined as the set of all vectors $\mathbf{x} \in \mathbb{R}^n$ such that $A\mathbf{x} = \mathbf{0}_m$. In other words,

$$\mathcal{N}(A) = \{ \mathbf{x} \in \mathbb{R}^n \mid \mathbf{0}_m = A\mathbf{x} \}.$$
(2)

The task of finding the column space or the null space is the task of finding the minimal set of vectors that *span* the vector spaces $\mathcal{R}(A)$ or $\mathcal{N}(A)$ respectively.

Find the $\mathcal{R}(A)$ and $\mathcal{N}(A)$ of the matrix A

$$A = \begin{pmatrix} 1 & 0 & 0 \\ 4 & 1 & 0 \\ 2 & 0 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & -3 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

$$A^{T} = \begin{pmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 3 & 2 & 0 \end{pmatrix} \begin{pmatrix} 0 & -3 & 0 \\ 0 & -3 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 1 & 4 & 2 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$R(A^{T}) = R_{0W} \text{ space of } A$$

$$M(A^{T}) = \text{ left null space of } A \text{ Ax=0}$$

$$A^{T} = 0 \text{ y } T A = 0^{T}$$

Four fundamental subspaces of matrix $A \in \mathbb{R}^{m \times n}$:

- $\checkmark 1$. Column space: All possible values of $\mathbf{b} = A\mathbf{x}$ for any $\mathbf{x} \in \mathbb{R}^n$.
- \checkmark 2. Null space: All possible values of $\mathbf{x} \in \mathbb{R}^n$ so that $A\mathbf{x} = \mathbf{0}_m$.
 - 3. Row space: Column space of A^{\top} . All possible values of $\mathbf{b} = A^{\top} \mathbf{x}$ for any $\mathbf{x} \in \mathbb{R}^{m}$.
 - Left Null space: Null space of A^T. All possible values of y ∈ ℝ^m so that y^TA = 0.

The four fundamental subspaces of A

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 2 & 4 & 6 \end{bmatrix}$$

Geometric intuition

Eigenvalues and Eigenvectors

For a square matrix A, the λ_i and \mathbf{x}_i that satisfy the following equation are called eigenvalues and eigenvectors respectively.

$$A\mathbf{x} = \lambda \mathbf{x} \text{ or } (A - \lambda I)\mathbf{x} = 0$$
 (3)

 λ is chosen to ensure that $A-\lambda I$ has null space, hence, characteristic equation

$$\det(A - \lambda I) = 0 \tag{4}$$

For symmetrix matrix $A = A^{\top}$, eigenvalues are real, and eigenvectors are orthonormal,

$$A[\mathbf{x}_1, \dots, \mathbf{x}_n] = [\mathbf{x}_1, \dots, \mathbf{x}_n] \begin{bmatrix} \lambda_1 & \dots & 0\\ \vdots & \ddots & \vdots\\ 0 & \dots & \lambda_n \end{bmatrix}$$
(5)
$$AS = S\Lambda$$
(6)
if $A = A^{\top}$ then $A = S\Lambda S^{\top}$ (7)

$$\lambda = eigen value
A = \lambda = \lambda = \qquad y = eigen vector
A = eigen value s , n - eigen vector
n - eigen value s , n - eigen vector
maybe repeated n epeated
maybe complex
A = 1, o;
A = 1, o;$$

$$A \begin{bmatrix} u_{1} & u_{2} & \dots & u_{m} \end{bmatrix} = \begin{pmatrix} \lambda_{1} & v_{1} & \lambda_{2} & u_{2} & \dots & \lambda_{m} & v_{m} \end{bmatrix}$$

$$A = \begin{bmatrix} u_{1} & \dots & u_{m} \end{bmatrix} \begin{bmatrix} \lambda_{1} & \dots & 0 \\ 0 & \lambda_{m} \end{bmatrix}$$

$$= S \bigwedge$$

$$A = S \bigwedge S^{-1}$$

$$A = S \bigwedge S^{-1}$$

$$A^{2} = AA = (S \bigwedge S^{-1})(S \bigwedge S^{-1})$$

$$= S \bigwedge^{2} S^{-1}$$

$$A^{n} = S \bigwedge^{2} S^{-1}$$

eigen values / vertion for small matric

$$A v = \lambda v$$

 $A v = \lambda v$
 A

Numerical example

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 2 & 4 & 6 \end{bmatrix}$$

Find eigen values and eigen vectors.

Singular Value Decomposition (SVD)

$$A = U \begin{bmatrix} \Sigma & 0 \\ 0 & 0 \end{bmatrix} V^{\top}$$
(8)

$$A^{\top}A = V\Sigma^2 V^{-1} \tag{9}$$

$$A^{\top}A\mathbf{v}_{i} = \lambda_{i}\mathbf{v}_{i} \qquad \qquad \lambda_{i} = \sigma_{i}^{2} \qquad (10)$$

$$AV = U \begin{bmatrix} \Sigma & 0 \\ 0 & 0 \end{bmatrix}$$
(11)
$$U^{+} = \Sigma^{-1} AV^{+}$$
(12)

Numerical example

Find singular value decomposition

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 2 & 4 & 6 \end{bmatrix}$$

Homography

Examples of Homography

Computing Homography

Computing Homography

Solving for Homography derivation

Direct Linear Transformation (DLT) algorithm

Objective

Given $n \ge 4$ 2D to 2D point correspondences $\{\mathbf{x}_i \leftrightarrow \mathbf{x}'_i\}$, determine the 2D homography matrix H such that $\mathbf{x}'_i = H\mathbf{x}_i$.

Algorithm

- (i) For each correspondence $\mathbf{x}_i \leftrightarrow \mathbf{x}'_i$ compute the matrix \mathbb{A}_i from (4.1). Only the first two rows need be used in general.
- (ii) Assemble the $n \ 2 \times 9$ matrices A_i into a single $2n \times 9$ matrix A.
- (iii) Obtain the SVD of A (section A4.4(p585)). The unit singular vector corresponding to the smallest singular value is the solution h. Specifically, if $A = UDV^T$ with D diagonal with positive diagonal entries, arranged in descending order down the diagonal, then h is the last column of V.
- (iv) The matrix H is determined from h as in (4.2).

2D homography

Given a set of points $\mathbf{x}_i \in \mathbb{P}^2$ and a corresponding set of points $\mathbf{x}'_i \in \mathbb{P}^2$, compute the projective transformation that takes each \mathbf{x}_i to \mathbf{x}'_i . In a practical situation, the points \mathbf{x}_i and \mathbf{x}'_i are points in two images (or the same image), each image being considered as a projective plane \mathbb{P}^2 .

3D to 2D camera projection matrix estimation

Given a set of points X_i in 3D space, and a set of corresponding points x_i in an image, find the 3D to 2D projective P mapping that maps X_i to $x_i = PX_i$.