Linear algebra: Review

Equation of a 2 D line
T,mploict
equation
i. $y=m x+c$
$x=0 \quad 2$ parameters
2. $\quad a x+b y+c=0$

3 parameters

Line

$$
\begin{aligned}
& f_{L}(a, b, c)=\{(x, y): a x+b y+c=0, x \in \mathbb{R}, y \in \mathbb{R}\} \\
& C\left(x_{1}, y_{0}, r\right)=\left\{(a, y):\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}=r^{2}, x, y \in \mathbb{R}\right\}
\end{aligned}
$$

Circle
Implicit form

$$
\begin{gathered}
L\left(d_{x}, d_{y}, x_{0}, y_{0}\right)=\left\{\left(\lambda d_{x}+x_{0}, \lambda d_{y}+y_{0}\right)\right. \\
\forall \lambda \in \mathbb{R}\} \\
C\left(x_{0}, y_{0}, r\right)=\left\{\begin{array}{c}
\left(r \cos \theta+x_{0}, r \sin \theta+y_{0}\right) \\
\forall \theta \in[0,2 \pi)\}
\end{array}\right.
\end{gathered}
$$

Matplotlib

In [13]:

```
# Plot a line ax + by + c = 0
# a, b, c = 2.5, -1, -5 # pick numbers by hand
# pick a, b, c at random
import random
scale = 10
a, b, c = [scale*(random.random()-0.5) for_ in range(3)] # random numk
# Generate some sample points on a line
x, y = points_on_line(a, b, c, scale=scale)
#Plot the points c
fig, (ax) = plt.subplots()
stylizeax(ax, (min(x), max(x), min(y), max(y)))
ax.plot(x, y, '*-') # the line
ax.set_title(f'{a:.1f}x{b:+.1f}y{c:+.1f} = 0') # print the equation
Out[13]: \(\operatorname{Text}(0.5,1.0, \quad 2.8 x-3.7 y+2.3=0 ')\)
```


$$
\underbrace{\vec{a}=\left[\begin{array}{l}
1 \\
2
\end{array}\right]}_{\text {geometric }} \quad \underline{a}=\left[\begin{array}{l}
1 \\
2
\end{array}\right] \in \mathbb{R}_{\text {Real }}^{2^{\text {singe }}} \quad \underline{a} \in \mathbb{R}^{2}
$$ vector

$$
\underline{a}+\underline{b}=\left[\begin{array}{l}
1 \\
2
\end{array}\right]+\left[\begin{array}{l}
2 \\
3
\end{array}\right]
$$

Vectors

Dot product $\underline{a} \cdot \underline{b}=\left[\begin{array}{l}1 \\ 2\end{array}\right] \cdot\left[\begin{array}{l}3 \\ 4\end{array}\right]=1 \cdot 3+2 \cdot 4$

$$
\begin{array}{ll}
\underline{a} \in \mathbb{C}^{n} & \mathbb{R}^{n} \\
\underbrace{\underline{a} \cdot \underline{b} \in \mathbb{C}}_{\text {scalar }} & \underline{b}=\left[\begin{array}{c}
a_{1} \\
a_{2} \\
\vdots \\
a_{n}
\end{array}\right] \cdot\left[\begin{array}{c}
b_{1} \\
b_{2} \\
\vdots \\
b_{n}
\end{array}\right]=a_{1} b_{1}+a_{2} b_{2}+\ldots .+a_{n} b_{n} \\
& \underline{a} \cdot \underline{b} \in \mathbb{R} \text { scalar }
\end{array}
$$

Gecometric unterpretation of Dot product

$$
\begin{aligned}
& a \cdot \underline{b} \\
& \begin{array}{l}
\underline{b}=\text { magnitucle }\|\underline{b}\| \\
\text { norm } \\
x_{2}^{\prime}\| \| b\left\|^{\prime}\right\|=\sqrt{1^{2}+2^{2}}
\end{array} \\
& \|b\|=\sqrt{b_{1}^{2}+b_{2}^{2}+\ldots+b_{n}^{2}}
\end{aligned}
$$

n-D vector

$$
\begin{aligned}
& \begin{aligned}
\cos (0)=1 \\
\cos \left(50^{\circ}\right)=0
\end{aligned} \xrightarrow{\underline{a}} \underline{\underline{a}} \cdot \underline{b}=0 \\
& \xrightarrow{\underline{b}} \\
& \underline{\underline{a}} \cdot \underline{b}=\|\underline{a}\|\|\underline{\underline{a}}\|
\end{aligned}
$$

Vector addition

Vector addition is element-wise addition

$$
\mathbf{v}+\mathbf{w}=\left[\begin{array}{c}
v_{1} \\
\vdots \\
v_{n}
\end{array}\right]+\left[\begin{array}{c}
w_{1} \\
\vdots \\
w_{n}
\end{array}\right]=\left[\begin{array}{c}
v_{1}+w_{1} \\
\vdots \\
v_{n}+w_{n}
\end{array}\right]
$$

Geometrically the resulting vector can be obtained by triangle law or the parallelogram law.

(a)

(b)

Reference: [1]

Dot product of vectors
Dot product of two vectors is a scalar given by sum of element-wise product.

$$
\mathbf{v} \cdot \mathbf{u}=\left[\begin{array}{c}
v_{1} \\
\vdots \\
v_{n}
\end{array}\right] \cdot\left[\begin{array}{c}
u_{1} \\
\vdots \\
u_{n}
\end{array}\right]=v_{1} u_{1}+v_{2} u_{2}+\cdots+v_{n} u_{n}
$$

Geometrically, dot product is closely related to the projection. Projection of vector \mathbf{v} on \mathbf{u} is the dot product of \mathbf{v} with the direction of \mathbf{u}

$$
\operatorname{proj}_{\mathbf{u}} \mathbf{v}=\mathbf{v} \cdot \hat{\mathbf{u}}
$$

Dot product of vector with itself gives the square of the magnitude $\mathbf{v} \cdot \mathbf{v}=\|\mathbf{v}\|^{2}$.
Reference: [2]

Matrices

Transpose of a Matrix

Tranpose of a column vector

Matrix-vector product

Matrix-matrix product

Identity matrix

$$
\mathbf{I}_{n}=\left[\begin{array}{cccc}
1 & 0 & \ldots & 0 \\
0 & 1 & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & 1
\end{array}\right]
$$

Square matrix

A square matrix is a matrix with number of rows equal to the number of columns.

Inverse of a square matrix

A matrix \mathbf{V}^{-1} is called the inverse of a square matrix \mathbf{V} if $\mathbf{V}^{-1} \mathbf{V}=\mathbf{V}^{-1}=\mathbf{I}_{n}$. The inverse of a square matrix exists only when it is singular i.e the determinant of the matrix is non-zero $\operatorname{det}(\mathbf{V}) \neq 0$.

Using vectors for 2D line
notation
pts

$$
\begin{array}{l|l}
a x+b y \\
\underline{x}=\left[\begin{array}{l}
x \\
y
\end{array}\right], & \frac{w}{\uparrow}=\left[\begin{array}{l}
a \\
b
\end{array}\right]
\end{array} \left\lvert\, \begin{aligned}
& 5 x+2 y-10=0 \\
& 10 x+k y-20=0 \\
& a x+b y+c=0 \\
& \text { weights } \\
& \text { for any } \alpha \neq 0 \\
& \alpha a x+\alpha b y+\alpha c=0 \\
& \underline{w} \cdot \underline{x}=a \underline{x}+b y \\
& \underline{w} \cdot \underline{x}+c=0 \quad \alpha=\frac{1}{\|w\|-}
\end{aligned}\right.
$$

far th some line
we have ∞ many equations

Geometric interpretaion

$\hat{\omega} \cdot \underline{x}=-\omega_{0}$
Conormal to the lime
Implicut eq of lint un $2 D$ extends to implicit eq af plane in 3D

In [14]: import numpy as np \# a vector algebra library

```
a = np.array([0, 1, 2, 3]) # a vector
print("a=", a)
b = np.array([4, 5, 6, 7]) # another vector
print("b=", b)
C = np.array([[0, 1, 2, 3],
    [4, 5, 6, 7]]) # A matrix
print("C=", C)
D = np.zeros((2, 4)) # a 2x4 matrix of zeros
print("D=", D)
E = np.random.rand(2,5) # Random 2x5 matrix of numbers between 0 and 1
print("E=", E)
```

```
a=[[\begin{array}{llll}{0}&{1}&{2}&{3}\end{array}]
b}=[\begin{array}{llll}{4}&{5}&{6}&{7}\end{array}
C= [[llllll}
    [4 5 6 7]]
D= [[0. 0. 0. 0.]
    [0. 0. 0. 0.]]
E=[[0.24267745 0.34908614 0.31547851 0.15059988 0.17537179]
    [0.60868919 0.31716426 0.10530595 0.53841394 0.49799488]]
```

In [15]:

```
print("a*0.1 = ", a * 0.1) # element-wise multiplication
print("C*0.2 = ", C * 0.2) # element-wise multiplication
print("a*b = ", a * b) # element-wise multiplication (Note: different
print("a*b*0.2 = ", a * b * 0.2) # element-wise multiplication
print("C @ a = ", C @ a) # matrix-vector product
print("C.T = ", C.T) # matrix transpose
print("C.T @ D = ", C.T @ D) # matrix-matrix product
print("a * C = ", a * C) # so called broadcasting; numpy specific
    a*0.1 = [0. 0.1 0.2 0.3]
    C*0.2 = [[0. 0.2 0.4 0.6]
        [0.8 1. 1.2 1.4]]
    a*b = [ 0 5 12 21]
    a*b*0.2 = [0. 1. 2.4 4.2]
    C @ a = [14 38]
    C.T = [[04 4]
        [1 5]
        [2 6]
        [3 7]]
    C.T @ D = [[0. 0. 0. 0.]
        [0. 0. 0. 0.]
        [0. 0. 0. 0.]
        [0. 0. 0. 0.]]
    a * C = [[ 0 1 1 4 9]
        [ 0 5 12 21]]
        a=[{[0,1,2,3]
```

$$
\overbrace{}^{4}[=[\sqrt{2}]
$$

Numpy: General Broadcasting Rules
When operating on two arrays, NumPy compares their shapes element-wise. It starts with the trailing (i.e. rightmost) dimension and works its way left. Two dimensions are compatible when

1. they are equal, or
2. one of them is 1 .

Otherwise a ValueError is raised
Ref: https://numpy.org/doc/stable/user/basics.broadcasting.html

In the following example, both the A and B arrays have axes with length one that are expanded to a larger size during the broadcast operation:

```
A (4d array):
B (3d array):
Result (4d array):
```

In [16]:

```
A = np.random.rand(8, 1, 6, 1)
B = np.random.rand(7, 1, 5)
(A * B).shape # Returns the shape of the multi dimensional array
```

Out[16]: $(8,7,6,5)$

Here are some more examples:

```
A (2d array): 5 < 4
B (1d array): Ix 1
Result (2d array): 5 5 4
A (2d array): 5 x 4
B (1d array): 4
Result (2d array): 5x4
A (3d array): 15 x 3 x 5
B (3d array): 15 < 1 x 
Result (3d array):
A (3d array): 15 < 3 < 5
B (2d array): 
Result (3d array): P5 y 3 % 5
A (3d array): 15 x 3 x 5
B (2d array): }3\times
Result (3d array): }15\times3\times
```


Linear regression: review

Let's take the simple linear regression example from STS332 textbook (uploaded on brightspace;page 300; Table 6-1).
"As an illustration, consider the data in Table 6-1. In this table, y is the salt concentration (milligrams/liter) found in surface streams in a particular watershed and x is the percentage of the watershed area consisting of paved roads."

In [19]:

\%owritefile saltconcentration.tsv			
\#Observation	SaltConcentration	RoadwayArea	
1	3.8	0.19	
2	5.9	0.15	
3	14.1	0.57	
4	10.4	0.4	
5	14.6	0.7	
6	14.5	0.67	
7	15.1	0.63	
8	11.9	0.47	
9	15.5	0.75	
10	9.3	0.6	
11	15.6	0.78	
12	20.8	0.81	
13	14.6	0.78	
14	16.6	0.69	
15	25.6	1.3	
16	20.9	1.05	
17	29.9	1.52	
18	19.6	1.06	
19	31.3	1.74	
20	32.7	1.62	

Writing saltconcentration.tsv

In [20]:

```
# numpy can import text files separated by seprator like tab or comma
salt_concentration_data = np.loadtxt("saltconcentration.tsv")
salt_concentration_data
```

Out[20]: $\operatorname{array}([[1 ., 3.8, ~ 0.19]$, [2. , 5.9, 0.15], [3. , 14.1 , 0.57], [4. , 10.4 , 0.4], [5. , 14.6 , 0.7], [6. , 14.5 , 0.67], [7. , 15.1, 0.63], [8. , 11.9 , 0.47], [9. , 15.5 , 0.75], [10. , 9.3 , 0.6], [11. , 15.6 , 0.78], [12. , 20.8 , 0.81], [13. , 14.6 , 0.78], [14. , 16.6 , 0.69], [15. , 25.6 , 1.3], [16. , 20.9 , 1.05], [17. , 29.9 , 1.52], [18. , 19.6 , 1.06],
[19. , 31.3 , 1.74],
[20. , 32.7, 1.62]])

In [21]:

```
# Plot the points
```

fig, ax $=$ plt.subplots()
\# Scatter plot using matplotlibl
ax.scatter(salt_concentration_data[:, 2] salt_concentration_data[:, 1
ax.set_xlabel(r"Roadway area 亏̄")
ax.set_ylabel(r"Salt concentration (mg/L)")

Out[21]: Text(0, 0.5, 'Salt concentration (mg/L)')

$$
\begin{aligned}
e_{i}=e\left(x_{i}, y_{i}\right) & =y_{i}-\left(m x_{i}+c\right) \\
m^{*}, c^{2} & =\arg \min _{m, c} \underbrace{\sum_{i=1}^{n} e_{i}^{2}} \quad \underline{e}=\left[\begin{array}{c}
e_{1} \\
e_{2} \\
\vdots \\
e_{n}
\end{array}\right] \\
& =\arg \min _{m, c}\|\underline{e}\|^{2} \quad\|e\|=\sqrt{e_{1}^{2}+e_{2}^{2}+\ldots+e_{n}^{2}}
\end{aligned}
$$

Vectorization of Least square regression

$$
e=\left[\begin{array}{cc}
\|e\| \|^{2}=e \cdot e & e \cdot e=\left[\begin{array}{c}
e_{1} \\
e_{2} \\
y_{1}-\left(n x_{1}+c\right) \\
y_{2}-\left(m x_{2}+c\right) \\
\vdots \\
e_{n}
\end{array}\right] \cdot\left[\begin{array}{c}
e_{1} \\
e_{2}-\left(m x_{n}+c\right)
\end{array}\right] \\
\vdots \\
e_{n}
\end{array}\right]
$$

$$
\begin{aligned}
& \underline{y}=\left[\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{n}
\end{array}\right] \quad \underline{x}-\left[\begin{array}{c}
x_{1} \\
x_{1} \\
\vdots \\
x_{n}
\end{array}\right] \quad m \underline{x}=\left[\begin{array}{c}
m x_{1} \\
m x_{2} \\
\vdots \\
n i x_{3}
\end{array}\right] \\
& \underbrace{\underline{e}=\underline{y}-\left(m \underline{x}+c 1_{n}\right)}_{\text {vectorizachon }} \\
& \text { Matrices } \underline{m}=\left[\begin{array}{c}
m \\
c
\end{array}\right] \in \mathbb{R}^{2} \\
& \mathbf{1}_{n}=\left[\begin{array}{c}
1 \\
1 \\
\vdots \\
1
\end{array}\right] \\
& c=\left[\begin{array}{l}
c \\
\vdots \\
\vdots \\
c
\end{array}\right] \\
& \left.\begin{array}{l}
\text { Matrices } \\
\underline{V}=m
\end{array}\right]\left[\underline{v}_{1}, \underline{v}_{2}, \ldots \underline{v}_{n}\right] \quad v_{i} \in \mathbb{R}^{m} \\
& \underline{V} m \times n \underset{\text { matrix }}{\stackrel{n}{ }} \underline{V} \in \mathbb{R}^{m \times n}
\end{aligned}
$$

Matrix Tramspose

$$
\begin{aligned}
& \underline{V}=\left[\begin{array}{ll}
1 & 2 \\
3 & 4 \\
5 & 6
\end{array}\right] \rightarrow \underline{V}^{\top}=\left[\begin{array}{lll}
1 & 3 & 5 \\
2 & 4 & 6
\end{array}\right] \\
& \underline{V} \in \mathbb{R}^{m \times n} \rightarrow \underline{V}^{\top} \in \mathbb{R}^{n \times m} \\
& \underline{u}=\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right] \in \mathbb{R}^{m \times 1} \rightarrow \underline{U}^{\top} \in\left[\begin{array}{lll}
1 & 2 & 3
\end{array}\right] \in \mathbb{R}^{1 \times m}
\end{aligned}
$$

Matrix-vetor product

$$
\begin{aligned}
\underline{V} & =\left[\begin{array}{c}
\underline{v}_{1}^{\top} \\
\underline{v}_{2}^{\top} \\
\dot{v}_{m}^{\top}
\end{array}\right] \\
\underline{V} \underline{u} & =\left[\begin{array}{c}
v_{1}^{\top} \\
v_{2}^{\top} \\
\vdots \\
v_{m}^{\top}
\end{array}\right] \underline{u}=\left[\begin{array}{c}
v_{1}^{\top} \underline{u} \\
v_{2}^{\top} \underline{u} \\
\vdots \\
v_{m}^{\top} \underline{u}
\end{array}\right]
\end{aligned}
$$

Two rules of vector derivatives

There are two conventions in vector derivatives:

1. Gradient convention
2. Jacobian convention

Jacobian convention

Derivative of a linear function

Derivative of a quadratic function

Back to Least square regression

In [46]:

```
n = salt concentration data.shape[0]
bfx = sal̃t concentration data[:, 2:3]
bfy = salt_concentration_data[:, 1:2]
bfX = np.hstack((bfx, np.ones((bfx.shape[0], 1))))
bfX
```

Out[46]: $\operatorname{array([[0.19,~1.~],~}$
[0.15, 1.],
[0.57, 1.],
[0.4 , 1.],
[0.7 , 1.],
[0.67, 1.],
[0.63, 1.],
[0.47, 1.],
[0.75, 1.],
[0.6, 1.],
[0.78, 1.],
[0.81, 1.],
[0.78, 1.],
[0.69, 1.],
[1.3, 1.],
[1.05, 1.],
[1.52, 1.],
[1.06, 1.],
[1.74, 1.],
[1.62, 1.]])

In [47]: bfm = np.linalg.inv(bfX.T @ bfX) @ bfX.T @ bfy print(bfm)
bfm, * = np.linalg.lstsq(bfX, bfy, rcond=None) print($\bar{b} f m$)
[[17.5466671]
[2.67654631]]
[[17.5466671]
[2.67654631]]

In [48]:

```
m = bfm.flatten()[0]
c = bfm.flatten()[1]
# Plot the points
fig, ax = plt.subplots()
ax.scatter(salt_concentration_data[:, 2], salt_concentration_data[:, 1:
ax.set_xlabel(r"Roadway area $\%$")
ax.set ylabel(r"Salt concentration (mg/L)")
x = salt_concentration_data[:, 2]
y = m*x + c
# Plot the points
ax.plot(x, y, 'r-') # the line
```

Out[48]: [<matplotlib.lines.Line2D at 0x7fbf437f67c0>]

Exercise 1

Derive the equations for least square linear regression when the equation of line is $\hat{\mathbf{w}}^{\top} \mathbf{x}+w_{0}=0$ instead of $y=m x+c$.

Hint: Convert the least square problem into equation of the form $\mathbf{v}^{*}=\arg \min _{\mathbf{v}}\|\mathbf{L} \mathbf{v}\|^{2}$ such that $\mathbf{v}^{\top} \mathbf{v}=1$. Solve by finding null space of $\mathbf{L} . \mathbf{v}$ lies in the nullspace of \mathbf{L}. The nullspace of \mathbf{L} is the last eigenvector (corresponding to the smallest eigenvalue) of $\mathbf{L}^{\top} \mathbf{L}$.

The error $e\left(x_{i}, y_{i}\right)=(y-(m x+c))^{2}$ can be visualized as distance of observed point from the fit line parallel to y-axis. Draw the visual for the errors of the form: $e\left(\mathbf{x}_{i}\right)=\left(\hat{\mathbf{w}}^{\top} \mathbf{x}_{i}+w_{0}-0\right)^{2}$. You do not need to use matplotlib. You can draw by hand or editing software.

