
Linear algebra: Review
Equation of a 2D line

Implicit form

Paramteric form of 2D Line

Matplotlib
In [13]: # Plot a line ax + by + c = 0

a, b, c = 2.5, -1, -5 # pick numbers by hand

pick a, b, c at random
import random
scale = 10
a, b, c = [scale*(random.random()-0.5) for _ in range(3)] # random numb

Generate some sample points on a line
x, y = points_on_line(a, b, c, scale=scale)

Plot the points
fig, ax = plt.subplots()
stylizeax(ax, (min(x), max(x), min(y), max(y)))
ax.plot(x, y, '*-') # the line
ax.set_title(f'{a:.1f}x{b:+.1f}y{c:+.1f} = 0') # print the equation

Out[13]: Text(0.5, 1.0, '2.8x-3.7y+2.3 = 0')

Vectors

n-D vector

Vector addition

Vector addition is element-wise addition

Geometrically the resulting vector can be obtained by triangle law or the parallelogram
law.

Reference: []

v+w =
⎡
⎢⎢
⎣

v1

⋮
vn

⎤
⎥⎥
⎦
+
⎡
⎢⎢
⎣

w1

⋮
wn

⎤
⎥⎥
⎦
=
⎡
⎢⎢
⎣

v1 + w1

⋮
vn + wn

⎤
⎥⎥
⎦

1

Dot product of vectors
Dot product of two vectors is a scalar given by sum of element-wise product.

v ⋅ u =
⎡
⎢⎢
⎣

v1

⋮
vn

⎤
⎥⎥
⎦
⋅
⎡
⎢⎢
⎣

u1

⋮
un

⎤
⎥⎥
⎦
= v1u1 + v2u2 +⋯+ vnun

Geometrically, dot product is closely related to the projection. Projection of vector on
is the dot product of with the direction of

Dot product of vector with itself gives the square of the magnitude .

Reference: []

v u

v u

proj
u
v = v ⋅ û

v ⋅ v = ∥v∥2

2

Matrices

Transpose of a Matrix

Tranpose of a column vector

Matrix-vector product

Matrix-matrix product

Identity matrix

Square matrix
A square matrix is a matrix with number of rows equal to the number of columns.

Inverse of a square matrix
A matrix is called the inverse of a square matrix if . The
inverse of a square matrix exists only when it is singular i.e the determinant of the matrix
is non-zero .

In =

⎡
⎢⎢⎢⎢⎢
⎣

1 0 … 0
0 1 … 0

⋮ ⋮ ⋱ ⋮
0 0 … 1

⎤
⎥⎥⎥⎥⎥
⎦

V
−1

V V
−1
V = V

−1 = In

det(V) ≠ 0

Using vectors for 2D line
notation

Geometric interpretaion

In [14]: import numpy as np # a vector algebra library

a = np.array([0, 1, 2, 3]) # a vector
print("a=", a)
b = np.array([4, 5, 6, 7]) # another vector
print("b=", b)
C = np.array([[0, 1, 2, 3],
 [4, 5, 6, 7]]) # A matrix
print("C=", C)
D = np.zeros((2, 4)) # a 2x4 matrix of zeros
print("D=", D)
E = np.random.rand(2,5) # Random 2x5 matrix of numbers between 0 and 1
print("E=", E)

a= [0 1 2 3]
b= [4 5 6 7]
C= [[0 1 2 3]
 [4 5 6 7]]
D= [[0. 0. 0. 0.]
 [0. 0. 0. 0.]]
E= [[0.24267745 0.34908614 0.31547851 0.15059988 0.17537179]
 [0.60868919 0.31716426 0.10530595 0.53841394 0.49799488]]

In [15]: print("a*0.1 = ", a * 0.1) # element-wise multiplication
print("C*0.2 = ", C * 0.2) # element-wise multiplication
print("a*b = ", a * b) # element-wise multiplication (Note: different
print("a*b*0.2 = ", a * b * 0.2) # element-wise multiplication
print("C @ a = ", C @ a) # matrix-vector product
print("C.T = ", C.T) # matrix transpose
print("C.T @ D = ", C.T @ D) # matrix-matrix product
print("a * C = ", a * C) # so called broadcasting; numpy specific

a*0.1 = [0. 0.1 0.2 0.3]
C*0.2 = [[0. 0.2 0.4 0.6]
 [0.8 1. 1.2 1.4]]
a*b = [0 5 12 21]
a*b*0.2 = [0. 1. 2.4 4.2]
C @ a = [14 38]
C.T = [[0 4]
 [1 5]
 [2 6]
 [3 7]]
C.T @ D = [[0. 0. 0. 0.]
 [0. 0. 0. 0.]
 [0. 0. 0. 0.]
 [0. 0. 0. 0.]]
a * C = [[0 1 4 9]
 [0 5 12 21]]

Numpy: General Broadcasting Rules

When operating on two arrays, NumPy compares their shapes element-wise. It starts with
the trailing (i.e. rightmost) dimension and works its way left. Two dimensions are
compatible when

1. they are equal, or

2. one of them is 1.

Otherwise a ValueError is raised

Ref: https://numpy.org/doc/stable/user/basics.broadcasting.html

In the following example, both the A and B arrays have axes with length one that are
expanded to a larger size during the broadcast operation:

A (4d array): 8 x 1 x 6 x 1
B (3d array): 7 x 1 x 5
Result (4d array): 8 x 7 x 6 x 5

In [16]: A = np.random.rand(8, 1, 6, 1)
B = np.random.rand(7, 1, 5)
(A * B).shape # Returns the shape of the multi dimensional array

Out[16]: (8, 7, 6, 5)

Here are some more examples:

A (2d array): 5 x 4
B (1d array): 1
Result (2d array): ?

A (2d array): 5 x 4
B (1d array): 4
Result (2d array): ?

A (3d array): 15 x 3 x 5
B (3d array): 15 x 1 x 5
Result (3d array):

A (3d array): 15 x 3 x 5
B (2d array): 3 x 5
Result (3d array): ?

A (3d array): 15 x 3 x 5
B (2d array): 3 x 1
Result (3d array): ?

Linear regression: review
Let's take the simple linear regression example from STS332 textbook (uploaded on
brightspace;page 300; Table 6-1).

"As an illustration, consider the data in Table 6-1. In this table, y is the salt concentration
(milligrams/liter) found in surface streams in a particular watershed and x is the
percentage of the watershed area consisting of paved roads."

In [19]: %%writefile saltconcentration.tsv
#Observation SaltConcentration RoadwayArea
1 3.8 0.19
2 5.9 0.15
3 14.1 0.57
4 10.4 0.4
5 14.6 0.7
6 14.5 0.67
7 15.1 0.63
8 11.9 0.47
9 15.5 0.75
10 9.3 0.6
11 15.6 0.78
12 20.8 0.81
13 14.6 0.78
14 16.6 0.69
15 25.6 1.3
16 20.9 1.05
17 29.9 1.52
18 19.6 1.06
19 31.3 1.74
20 32.7 1.62

Writing saltconcentration.tsv

In [20]: # numpy can import text files separated by seprator like tab or comma
salt_concentration_data = np.loadtxt("saltconcentration.tsv")
salt_concentration_data

Out[20]: array([[1. , 3.8 , 0.19],
 [2. , 5.9 , 0.15],
 [3. , 14.1 , 0.57],
 [4. , 10.4 , 0.4],
 [5. , 14.6 , 0.7],
 [6. , 14.5 , 0.67],
 [7. , 15.1 , 0.63],
 [8. , 11.9 , 0.47],
 [9. , 15.5 , 0.75],
 [10. , 9.3 , 0.6],
 [11. , 15.6 , 0.78],
 [12. , 20.8 , 0.81],
 [13. , 14.6 , 0.78],
 [14. , 16.6 , 0.69],
 [15. , 25.6 , 1.3],
 [16. , 20.9 , 1.05],
 [17. , 29.9 , 1.52],
 [18. , 19.6 , 1.06],
 [19. , 31.3 , 1.74],
 [20. , 32.7 , 1.62]])

In [21]: # Plot the points
fig, ax = plt.subplots()
Scatter plot using matplotlib
ax.scatter(salt_concentration_data[:, 2], salt_concentration_data[:, 1]
ax.set_xlabel(r"Roadway area %")
ax.set_ylabel(r"Salt concentration (mg/L)")

Out[21]: Text(0, 0.5, 'Salt concentration (mg/L)')

Least squares regression

Vectorization of Least square regression

Two rules of vector derivatives
There are two conventions in vector derivatives:

1. Gradient convention

2. Jacobian convention

Gradient convention

Jacobian convention

Derivative of a linear function

Derivative of a quadratic function

Back to Least square regression

In [46]: n = salt_concentration_data.shape[0]
bfx = salt_concentration_data[:, 2:3]
bfy = salt_concentration_data[:, 1:2]
bfX = np.hstack((bfx, np.ones((bfx.shape[0], 1))))
bfX

Out[46]: array([[0.19, 1.],
 [0.15, 1.],
 [0.57, 1.],
 [0.4 , 1.],
 [0.7 , 1.],
 [0.67, 1.],
 [0.63, 1.],
 [0.47, 1.],
 [0.75, 1.],
 [0.6 , 1.],
 [0.78, 1.],
 [0.81, 1.],
 [0.78, 1.],
 [0.69, 1.],
 [1.3 , 1.],
 [1.05, 1.],
 [1.52, 1.],
 [1.06, 1.],
 [1.74, 1.],
 [1.62, 1.]])

In [47]: bfm = np.linalg.inv(bfX.T @ bfX) @ bfX.T @ bfy
print(bfm)
bfm, *_ = np.linalg.lstsq(bfX, bfy, rcond=None)
print(bfm)

[[17.5466671]
 [2.67654631]]
[[17.5466671]
 [2.67654631]]

In [48]: m = bfm.flatten()[0]
c = bfm.flatten()[1]

Plot the points
fig, ax = plt.subplots()
ax.scatter(salt_concentration_data[:, 2], salt_concentration_data[:, 1]
ax.set_xlabel(r"Roadway area $\%$")
ax.set_ylabel(r"Salt concentration (mg/L)")
x = salt_concentration_data[:, 2]
y = m * x + c
Plot the points
ax.plot(x, y, 'r-') # the line

Out[48]: [<matplotlib.lines.Line2D at 0x7fbf437f67c0>]

Exercise 1
Derive the equations for least square linear regression when the equation of line is

 instead of .

Hint: Convert the least square problem into equation of the form

such that . Solve by finding null space of . lies in the nullspace of . The

nullspace of is the last eigenvector (corresponding to the smallest eigenvalue) of .

The error can be visualized as distance of observed point

from the fit line parallel to y-axis. Draw the visual for the errors of the form:

. You do not need to use matplotlib. You can draw by hand

or editing software.

ŵ
⊤
x+ w0 = 0 y = mx+ c

v
∗ = arg minv ∥Lv∥2

v
⊤
v = 1 L v L

L L
⊤
L

e(xi, yi) = (y− (mx+ c))2

e(xi) = (ŵ⊤
xi + w0 − 0)2

