\sim

Linear algebra: Review

Equation of a 2D line

$$f_{\text{slope}} = e^{\text{mtexcept}} - y$$

 $f_{\text{slope}} = e^{\text{mtexcept}} - y$
 $f_{\text{sl$

$$L(\alpha, b, c) = \{(x, y); \alpha + by + c = 0, \pi \in \mathbb{R}, y \in \mathbb{R}\}$$

$$L(\alpha, b, c) = \{(x, y); \alpha + by + c = 0, \pi \in \mathbb{R}, y \in \mathbb{R}\}$$

$$C(\pi, y_0, \pi) = \{(x, y): (\pi - \pi_0)^2 + (y - y_0)^2 = \pi^2, \pi, y \in \mathbb{R}\}$$
Cycle Implicit form

$$L\left(d_{x}, d_{y}, \mathcal{H}_{0}, \mathcal{Y}_{0}\right) = \left\{\left(\lambda d_{x} + \mathcal{X}_{0}, \lambda d_{y} + \mathcal{Y}_{0}\right) \\ + \lambda \in [R]$$

$$C\left(\mathcal{X}_{0}, \mathcal{Y}_{0}, \pi\right) = \left\{\left(\mathcal{H}\cos \Theta + \mathcal{H}_{0}, \beta \sin \Theta + \mathcal{Y}_{0}\right) \\ + \partial \in [0, 2\pi) \right\}$$
Paramteric form of 2D Line $\left[0, 2\pi\right]$

Matplotlib

```
In [13]: # Plot a line ax + by + c = 0
         # a, b, c = 2.5, -1, -5 # pick numbers by hand
         # pick a, b, c at random
         import random
         scale = 10
         a, b, c = [scale*(random.random()-0.5) for __in range(3)] # random numl
         # Generate some sample points on a line
         x, y = points on line(a, b, c, scale=scale)
         #Plot the points
          fig, (ax) = plt.subplots()
         stylizeax(ax, (min(x), max(x), min(y), max(y)))
         ax.plot(x, y, '*-') # the line
         ax.set title(f'{a:.1f}x{b:+.1f}y{c:+.1f} = 0') # print the equation
```

Out[13]: Text(0.5, 1.0, '2.8x-3.7y+2.3 = 0')

Geometric interprotection of Dot-product

$$a \cdot b$$
 $a \cdot b$ $b = magnitude ||b||$
 $b = magnitude ||b||$
 $b = magnitude ||b||$
 $b = b$
 $b = b$

n-D vector cos(0) = 1 $cos(30^{\circ}) = 0$ g . b <u>cr</u>.<u>b</u>=D

a ط $\underline{a} \cdot \underline{b} = \|\underline{a}\| \|\underline{b}\|$

G g - b = -i[[q]][[b]]ط لا

Vector addition

Vector addition is element-wise addition

$$\mathbf{v}+\mathbf{w}=egin{bmatrix} v_1\dots\ v_n\end{bmatrix}+egin{bmatrix} w_1\dots\ w_n\end{bmatrix}=egin{bmatrix} v_1+w_1\dots\ dots\ v_n+w_n\end{bmatrix}$$

Geometrically the resulting vector can be obtained by triangle law or the parallelogram law.

Reference: [1]

Dot product of vectors

Dot product of two vectors is a scalar given by sum of element-wise product.

$$\mathbf{v}\cdot\mathbf{u} = egin{bmatrix} v_1\dots\ v_n\end{bmatrix}\cdotegin{bmatrix} u_1\dots\ u_n\end{bmatrix} = v_1u_1+v_2u_2+\dots+v_nu_n$$

Geometrically, dot product is closely related to the projection. Projection of vector ${\bf v}$ on ${\bf u}$ is the dot product of ${\bf v}$ with the direction of ${\bf u}$

 $\operatorname{proj}_{\mathbf{u}}\mathbf{v} = \mathbf{v} \cdot \hat{\mathbf{u}}$

Dot product of vector with itself gives the square of the magnitude $\mathbf{v} \cdot \mathbf{v} = \|\mathbf{v}\|^2$. Reference: [2]

Matrices

Transpose of a Matrix

Tranpose of a column vector

Matrix-vector product

Matrix-matrix product

Identity matrix

$$\mathbf{I}_n = egin{bmatrix} 1 & 0 & \dots & 0 \ 0 & 1 & \dots & 0 \ dots & dots & \ddots & dots \ dots & dots & \ddots & dots \ 0 & 0 & \dots & 1 \end{bmatrix}$$

Square matrix

A square matrix is a matrix with number of rows equal to the number of columns.

Inverse of a square matrix

A matrix \mathbf{V}^{-1} is called the inverse of a square matrix \mathbf{V} if $\mathbf{V}^{-1}\mathbf{V} = \mathbf{V}^{-1} = \mathbf{I}_n$. The inverse of a square matrix exists only when it is singular i.e the determinant of the matrix is non-zero $\det(\mathbf{V}) \neq 0$.

Using vectors for 2D line notation for The some linewe have as many equation<math>5x+2y-10=0

$$\begin{array}{c} (x + by) + (c = 0) \\ \overrightarrow{z} = \begin{pmatrix} z \\ y \end{pmatrix}, & \underbrace{w} = \begin{pmatrix} q \\ b \end{pmatrix} \\ \overrightarrow{r} = \begin{pmatrix} 0 \\ y \end{pmatrix}, & \underbrace{w} = \begin{pmatrix} q \\ b \end{pmatrix} \\ (0x + k_{1}y - 20 = 0) \\ (0x + k_{1}y -$$

þts

Ŵr $-W_{0}$ 2 = 7(JEIR3 eIRÍ NZ NCCIRS えょ。 ŵえ+wo=ojXEIPZG Monl 1 w - $Z \in \mathbb{R}^{3}$ $P(\hat{\omega}, w) = \xi$ [/ Z' GIRNS $HP(\hat{\omega}, w_{0})$ Z It ypor plana

```
a= [0 1 2 3]
b= [4 5 6 7]
C= [[0 1 2 3]
[4 5 6 7]]
D= [[0. 0. 0. 0.]
[0. 0. 0. 0.]]
E= [[0.24267745 0.34908614 0.31547851 0.15059988 0.17537179]
[0.60868919 0.31716426 0.10530595 0.53841394 0.49799488]]
```

In [15]: print("a*0.1 = ", a * 0.1) # element-wise multiplication print("C*0.2 = ", C * 0.2) # element-wise multiplication print("a*b = ", a * b) # element-wise multiplication (Note: different print("a*b*0.2 = ", a * b * 0.2) # element-wise multiplication print("C @ a = ", C @ a) # matrix-vector product print("C.T = ", C.T) # matrix transpose print("C.T @ D = ", C.T @ D) # matrix-matrix product print("a * C = ", a * C) # so called broadcasting; numpy specific

```
a*0.1 = [0. 0.1 0.2 0.3]
C*0.2 = [[0. 0.2 0.4 0.6]]
[0.8 1. 1.2 1.4]]
a*b = [0 5 12 21]
a*b*0.2 = [0. 1. 2.4 4.2]
C @ a = [14 38]
C.T = [0 4]
[1 5]
[2 6]
[3 7]]
C.T @ D = [[0. 0. 0. 0.]]
[0. 0. 0. 0.]
[0. 0. 0. 0.]
[0. 0. 0. 0.]]
a * C = [[0 1 4 9]]
[ 0 5 12 21]]
```

0,1,2,3

 $C^{*}C = \sum_{i} C$

Numpy: General Broadcasting Rules

When operating on two arrays, NumPy compares their shapes element-wise. It starts with the trailing (i.e. rightmost) dimension and works its way left. Two dimensions are compatible when

1. they are equal, or

2. one of them is 1.

Otherwise a ValueError is raised

Ref: https://numpy.org/doc/stable/user/basics.broadcasting.html

In the following example, both the A and B arrays have axes with length one that are expanded to a larger size during the broadcast operation:

A
$$(4d \text{ array}): 8 \times 1 \times 6 \times 1 \longrightarrow 1 \text{ prepead} \rightarrow 2 \times 7 \times 6 \times 5$$

B $(3d \text{ array}): 7 \times 1 \times 5 \longrightarrow 1 \times 5 \longrightarrow 1 \times 7 \times 6 \times 5$
Result $(4d \text{ array}): 8 \times 7 \times 6 \times 5$
In [16]: A = np.random.rand(8, 1, 6, 1)
B = np.random.rand(7, 1, 5)
(A * B).shape # Returns the shape of the multi dimensional array

Out[16]: (8, 7, 6, 5)

Here are some more examples:

```
A (2d array): 5 x 4
B (1d array): 1 1
Result (2d array): 5×4
  (2d array): 5 x 4
А
B (1d array): 4
Result (2d array): 5×4
А
  (3d array): 15 x 3 x 5
B (3d array): 15 x 1 x 5
Result (3d array):
   (3d array): 15 x 3 x 5
А
B (2d array): 3 x 5
Result (3d array): 7 5 7 7 7 5
А
  (3d array): 15 x 3 x 5
B (2d array): 3 x 1
Result (3d array): 75 x 3 x 5
```

A +B

Linear regression: review

Let's take the simple linear regression example from STS332 textbook (uploaded on brightspace;page 300; Table 6-1).

"As an illustration, consider the data in Table 6-1. In this table, y is the salt concentration (milligrams/liter) found in surface streams in a particular watershed and x is the percentage of the watershed area consisting of paved roads."

In [19]:	<pre>%writefile saltconcentration.tsv</pre>				
	#0bserv	ration	SaltConcentration	RoadwayArea	
	1	3.8	0.19		
	2	5.9	0.15		
	3	14.1	0.57		
	4	10.4	0.4		
	5	14.6	0.7		
	6	14.5	0.67		
	7	15.1	0.63		
	8	11.9	0.47		
	9	15.5	0.75		
	10	9.3	0.6		
	11	15.6	0.78		
	12	20.8	0.81		
	13	14.6	0.78		
	14	16.6	0.69		
	15	25.6	1.3		
	16	20.9	1.05		
	17	29.9	1.52		
	18	19.6	1.06		
	19	31.3	1.74		
	20	32.7	1.62		

Writing saltconcentration.tsv

In [20]: # numpy can import text files separated by seprator like tab or comma
salt_concentration_data = np.loadtxt("saltconcentration.tsv")
salt_concentration_data

Out[20]:	array([[1.	, 3.8,	0.19],
la al	[2.	, 5.9,	0.15],
	[3.	, 14.1 ,	0.57],
	[4.	, 10.4 ,	0.4],
	[5.	, 14.6 ,	0.7],
	[6.	, 14.5 ,	0.67],
	[7.	, 15.1 ,	0.63],
	[8.	, 11.9 ,	0.47],
	[9.	, 15.5 ,	0.75],
	[10.	, 9.3 ,	0.6],
	[11.	, 15.6 ,	0.78],
	[12.	, 20.8 ,	0.81],
	[13.	, 14.6 ,	0.78],
	[14.	, 16.6 ,	0.69],
	[15.	, 25.6 ,	1.3],
	[16.	, 20.9 ,	1.05],
	[17.	, 29.9 ,	1.52],
	[18.	, 19.6 ,	1.06],
	[19.	, 31.3 ,	1.74],
	[20.	, 32.7 ,	1.62]])

In [21]: # Plot the points
fig, ax = plt.subplots()
Scatter plot using matplotlib
ax.scatter(salt_concentration_data[:, 2]) salt_concentration_data[:, 1]
ax.set_xlabel(r"Roadway area %")
ax.set_ylabel(r"Salt_concentration (mg/L)")

Out[21]: Text(0, 0.5, 'Salt concentration (mg/L)')

$$e_{i} = e(x_{i}, y_{i}) = y_{i} - (m_{n}x_{i} + c)$$

$$m_{r}^{*} c_{i}^{*} = \omega_{1}g_{m,c} \sum_{i=1}^{n} e_{i}^{*}$$

$$= \omega_{1}g_{m,c} \lim_{i \neq 1} e_{i}^{*} \lim_{l \neq 1} e_{i}^{*} = \int e_{i}^{*} + e_{2}^{*} + \dots + e_{n}^{*}$$

$$= \omega_{1}g_{m,c} \lim_{l \neq 1} e_{i}^{*} \lim_{l \neq 1} e_{i}^{*} = \int e_{i}^{*} + e_{2}^{*} + \dots + e_{n}^{*}$$

Vectorization of Least square regression

$$||C_{i}||^{2} = C \cdot C$$

$$C = \begin{cases} y_{i} - y_{i} - y_{i} - y_{i} + c \\ y_{2} - (m z_{2} + c) \end{cases}$$

$$(y_{1} - (m x_{2} + c))$$

$$\begin{array}{c} \mathcal{C} & \mathcal{C} = \begin{pmatrix} e_1 \\ c_2 \\ \vdots \\ e_n \end{pmatrix}, \begin{pmatrix} c_1 \\ c_2 \\ \vdots \\ e_n \end{pmatrix} \\ = \begin{pmatrix} 2 \\ 1 \\ c_1 \\ c_2 \\ \vdots \\ e_n \end{pmatrix} \\ \begin{array}{c} \mathcal{C} \\ \mathcal{C} \\$$

$$\underbrace{\underbrace{y}}_{1} = \begin{pmatrix} y_{1} \\ y_{2} \\ \vdots \\ y_{n} \end{pmatrix} \qquad \underbrace{\underbrace{x}}_{1} = \begin{pmatrix} \pi_{1} \\ \pi_{2} \\ \vdots \\ \pi_{n} \end{pmatrix} \qquad \underbrace{m = \begin{pmatrix} m \\ \pi_{n} \\ \pi_{n} \end{pmatrix}}_{1} \qquad \underbrace{m = \begin{pmatrix} m \\ \pi_{n} \\ \pi_{n} \\ \pi_{n} \end{pmatrix}} \qquad \underbrace{m = \begin{pmatrix} m \\ \pi_{n} \\ \pi_{n} \\ \pi_{n} \\ \pi_{n} \\ \pi_{n} \\ \mu_{n} \\ \mu$$

I

Two rules of vector derivatives

There are two conventions in vector derivatives:

- 1. Gradient convention
- 2. Jacobian convention

Gradient convention

Jacobian convention

Derivative of a linear function

Derivative of a quadratic function

Back to Least square regression

In [46]: n = salt_concentration_data.shape[0] bfx = salt concentration data[:, 2:3] bfy = salt concentration data[:, 1:2] bfX = np.hstack((bfx, np.ones((bfx.shape[0], 1)))) bfX Out[46]: array([[0.19, 1.], [0.15, 1.], [0.57, 1.], [0.4 , 1.], [0.7, 1.], [0.67, 1.], [0.63, 1.], [0.47, 1.], [0.75, 1.], [0.6, 1.], [0.78, 1.], [0.81, 1.], [0.78, 1.], [0.69, 1.], [1.3, 1.], [1.05, 1.], [1.52, 1.], [1.06, 1.],[1.74, 1.], [1.62, 1.]])

[2.67654631]] [[17.5466671] [2.67654631]]

```
In [48]: m = bfm.flatten()[0]
c = bfm.flatten()[1]
# Plot the points
fig, ax = plt.subplots()
ax.scatter(salt_concentration_data[:, 2], salt_concentration_data[:, 1]
ax.set_xlabel(r"Roadway area $\%$")
ax.set_ylabel(r"Salt concentration (mg/L)")
x = salt_concentration_data[:, 2]
y = m * x + c
# Plot the points
ax.plot(x, y, 'r-') # the line
```

Out[48]: [<matplotlib.lines.Line2D at 0x7fbf437f67c0>]

Exercise 1

Derive the equations for least square linear regression when the equation of line is $\hat{\mathbf{w}}^{\top}\mathbf{x} + w_0 = 0$ instead of y = mx + c.

Hint: Convert the least square problem into equation of the form $\mathbf{v}^* = \arg \min_{\mathbf{v}} \|\mathbf{L}\mathbf{v}\|^2$ such that $\mathbf{v}^{\top}\mathbf{v} = 1$. Solve by finding null space of \mathbf{L} . \mathbf{v} lies in the nullspace of \mathbf{L} . The nullspace of \mathbf{L} is the last eigenvector (corresponding to the smallest eigenvalue) of $\mathbf{L}^{\top}\mathbf{L}$.

The error $e(x_i, y_i) = (y - (mx + c))^2$ can be visualized as distance of observed point from the fit line parallel to y-axis. Draw the visual for the errors of the form: $e(\mathbf{x}_i) = (\hat{\mathbf{w}}^\top \mathbf{x}_i + w_0 - 0)^2$. You do not need to use matplotlib. You can draw by hand or editing software.