
Practice Problems for Midterm 1

1. Calculators are allowed

2. Computers are not allowed

3. Show your work

Python Basics

The midterm will be on paper, no computers will be allowed. Make sure you know what the

python code output should be.

Python questions will be restriced to content covered in Python_1.ipynb and Python_2.ipynb

Q1. What will the following code print?

Q2. What will the following code print?

Q3. What will the following code print?

Q4. Which code is faster? Option 1 or Option 2?

Q5. Which code is faster? Option 1 or Option 2?

In [ ]: hello = "'Hello'" 
name = '"ECE"'
pi = 3.1419 
print(f'{hello:s} {name}. pi is {pi:.03f}')  # string formatting 

In [ ]: xs = [1, 2, 3, 'hello', [4, 5, 6]]    # Create a list 
print(xs[-1])

In [ ]: nums = list(range(5))    # range is a built-in function that creates a list 
print(nums[-2:]) 

In [ ]: # Code Option 1: 
d = {'cat': 'cute', 'dog': 'furry'} # Create a new dictionary with some dat
print(d['dog']) 
# Code option 2: 
keys = ['cat', 'dog'] # Create the dictionary with keys as lists 
values = ['cute', 'furry'] # # Create the dictionary with values as lists
print(values[keys.index('dog')]) 

In [ ]: # Code Option 1: 
d = {0: 'cute', 1: 'furry'}  # Create a new dictionary with some data 
print(d[1])
# Code option 2: 



Q6. What is the output of the following code?

Numpy basics

Python questions will be restriced to content covered in NumpyTutorial.ipynb

Q7: What is the output of the following code?

Q8. What is the output of the following code?

Q9. What is the output of the following code?

Linear algebra and it's geometry

Q10.

Show that for any vector , it's magnitude squared is same as dot

product with itself i.e. 

A10. The mangitude of n-D vector is given by  and dot

product the vector with itself is given by 

values = ['cute', 'furry'] # # Create the dictionary with values as lists 
print(values[1]) 

In [ ]: class Value: 
def __init__(self, v):

        self.v = v 

    def __add__(self, other): 
return self.v * other

print(Value(3) + 2) 

In [ ]: import numpy as np
x = np.array([[1, 2], [3, 4]]) 
y = np.array([[5, 6]]) 
np.concatenate((x.T, y.T), axis=-1) 

In [ ]: x = np.array([[1, 2], [3, 4]])
y = np.array([[5, 6]]) 
x @ y.T 

In [ ]: x = np.array([[1, 2], [3, 4]]) 
y = np.array([[5, 6]])
(x * y).sum(axis=-1) 

a = [a1, a2,… , an]
∥a∥2 = a⊤a

∥a∥ =√a21 + a22 +⋯+ a2n



. Squaring the magnitude

gives us , which is same as .

    

Q11. For given vectors  and  find the projection of  on  . Also find the

equation of dotted line which is perpendicular to  and passes through . Convert the

equation of line to the form .

 and .

A11.

1. 

2. The dotted line is the set of all points  that satisfy 

3. Let . Then the above equation of line can be written as 

or 

A12. Recall that the magnitude of a vector  has a similar

form to the error function. This suggests that we can define an error vector with the signed

error for each data point as it's elements

  

Q12.

Convert the following scalar equation into vector form. Your end result should contain 

,  and . You can define other

vectors and matrices as needed, included a vector of ones like .

a⊤a = a1a1 + a2a2 +⋯+ anan = a21 + a22 +⋯+ a2n
∥a∥ = a21 + a22 +⋯+ a2n a⊤a

v u v u proju v
u v

y = mx+ c

v = [ 2
3
] u = [ 3

2
]

proj
u
v = v⊤ =u

∥u∥
12

√13

x ∈ R2 u⊤x = u⊤v

x = [x, y] [3, 2] [ x
y
] = 12

3x+ 2y = 12

m = [m; c] y = [y1; y2;… ; yn] x = [x1;x2,… ,xn]
1n

e(m, c, (x1, y1), (x2, y2),… , (xn, yn)) = (y1 − (x1m+ c))2 + (y2 − (x2m+ c))2

+ (yn − (xnm+ c))2

∥v∥ =√v21 + v22 +⋯+ vnn



The total error is same as minimizing the square of error vector magnitude which is further

same as vector product with itself.

Let us define  to denote the vector of all x coordinates of the dataset and

 to denote y coordinates. Then the error vector is:

where  is a n-D vector of all ones. Finally, we vectorize parameters of the line 

. We will also need to horizontally concatenate  and . Let's call the result 

. Now, the error vector looks like this:

Expanding the error magnitude:

Q13:

Convert the following scalar equation into vector form. Your end result should contain 

, ,  and .

You can define other vectors and matrices as needed, included a vector of all ones like .

A13: A variation of A12

Q14

 Convert the following vector equation into even more vectorized form.

e =

⎡⎢ ⎢ ⎢ ⎢ ⎢⎣

y1 − (mx1 + c)
y2 − (mx2 + c)

⋮
yn − (mxn + c)

⎤⎥ ⎥ ⎥ ⎥ ⎥⎦

e(m, c, (x1, y1), (x2, y2),… , (xn, yn)) = ∥e∥2 = e⊤e

x = [x1;… ;xn]
y = [y1;… ; yn]

e = y− (xm+ 1nc)

1n
m = [m; c] x 1n

X = [x,1n] ∈ Rn×2

e = y−Xm

∥e∥2 = (y−Xm)⊤(y−Xm)

= y⊤y+m⊤X⊤Xm− 2y⊤Xm

m = [a; b; c] z = [z1; z2;… ; zn] y = [y1; y2;… ; yn] x = [x1;x2,… ,xn]
1n

e(a, b, c, (x1, y1, z1), (x2, y2, z2),… , (xn, yn, zn)) = (z1 − (x1a + y1b + c))2

+ (z2 − (x2a + y2b + c))2 +⋯+ (zn − (xna + ynb + c))2

e(m0,m, (x1, y1), (x2, y2),… , (xn, yn)) = (y1 − (x⊤1m+m0))2

+ (y2 − (x⊤2m+m0))2 +⋯+ (yn − (x⊤nm+m0))2



where  is a p-dimensional vector and 

 are p-dimensional vectors for all 

Your end result should contain , 

 and

.

You can define other vectors and matrices as needed, included a vector of all ones like .

A15. Recall that the magnitude of a vector  has a similar

form to the error function. This suggests that we can define an error vector with the signed

error for each data point as it's elements

The total error is same as minimizing the square of error vector magnitude which is further

same as vector product with itself.

Let us define  to denote the vector of all x coordinates of the dataset

and  to denote y coordinates. Then the error vector is:

where  is a n-D vector of all ones. Finally, we call parameters of the line .

We will also need to horizontally concatenate  and . Let's call the result 

. Now, the error vector looks like this:

Expanding the error magnitude: 

m = [m1;m2;… ;mp] ∈ R
p

xi = [xi1;xi2;… ;xip] ∈ R
p i = {1, 2,…n}

q = [m0,m1,m2,… ,mp] ∈ R
p+1

y = [y1; y2;… ; yn] ∈ R
n

X =

⎡⎢ ⎢ ⎢⎢ ⎢⎣

x11 x12 … x1p

x21 x22 … x2p

⋮ ⋮ ⋱ ⋮
xn1 xn2 … xnp

⎤⎥ ⎥ ⎥⎥ ⎥⎦
=

⎡⎢ ⎢ ⎢ ⎢⎢⎣

x⊤1

x⊤2

⋮

x⊤n

⎤⎥ ⎥ ⎥ ⎥⎥⎦
∈ Rn×p

1n

∥v∥ =√v21 + v22 +⋯+ vnn

e =

⎡⎢ ⎢ ⎢⎢ ⎢⎣

y1 − (x⊤1m+m0)

y2 − (x⊤2m+m0)

⋮

yn − (x⊤2m2 +m0)

⎤⎥ ⎥ ⎥⎥ ⎥⎦

e(m0,m, (x1, y1), (x2, y2),… , (xn, yn)) = ∥e∥2 = e⊤e

X = [x⊤1 ;… ;x⊤n ]
y = [y1;… ; yn]

e = y− (1nm0 +Xm)

1n q = [m0;m]
X 1n

X̄ = [1n,X] ∈ Rn×(p+1)

e = y− X̄q

∥e∥2 = (y− X̄q)⊤(y− X̄q)

= y⊤y+m⊤X̄
⊤
X̄q− 2y⊤X̄q



Q16:

Convert the following scalar equation into vector form. Your end result should contain 

, the matrix ,  and 

. You can define other vectors and matrices as needed, included a

vector of all ones like .

The matrix  is defined as  which indicates that  is diagonal

matrix of .

A16:

Recall that the magnitude of a vector  has a similar form to

the error function. This suggests that we can define an error vector with the signed error for

each data point as it's elements

and let .

Note that

The total error is same as the square of error vector magnitude

m = [m; c] W = Diag([w1;w2;… ;wn]) y = [y1; y2;… ; yn]
x = [x1;x2,… ,xn]

1n

e(m, c, (x1, y1,w1), (x2, y2,w2),… , (xn, yn,wn)) = w2
1(y1 − (x1m+ c))2

+ w2
2(y2 − (x2m+ c))2 +⋯+ w2

n(yn − (xnm+ c))2

W Diag([w1;w2;… ;wn]) W

[w1;w2;… ;wn]

W = Diag([w1;w2;… ;wn]) =

⎡⎢ ⎢ ⎢ ⎢ ⎢⎣

w1 0 … 0
0 w2 … 0

⋮ ⋮ ⋱ ⋮
0 0 … wn

⎤⎥ ⎥ ⎥ ⎥ ⎥⎦

∥v∥ =√v21 + v22 +⋯+ vnn

e =

⎡⎢ ⎢ ⎢ ⎢ ⎢⎣

y1 − (mx1 + c)
y2 − (mx2 + c)

⋮
yn − (mxn + c)

⎤⎥ ⎥ ⎥ ⎥ ⎥⎦
W = Diag([w1;w2;… ;wn])

We =

⎡⎢ ⎢ ⎢ ⎢ ⎢⎣

w1(y1 − (mx1 + c))
w2(y2 − (mx2 + c))

⋮
w3(yn − (mxn + c))

⎤⎥ ⎥ ⎥ ⎥ ⎥⎦



The square of error vector magnitude is same as dot product with itself,

Let us define  to denote the vector of all x coordinates of the dataset and

 to denote y coordinates. Then the error vector is:

where  is a n-D vector of all ones. Finally, we vectorize parameters of the line 

. We will also need to horizontally concatenate  and . Let's call the result 

. Now, the error vector looks like this:

Expanding the error magnitude:

Q17:

Using vector derivatives find the minimum of the following vector quadratic function in :

The dimensions of the each of the variables are given , , , 

.

A17:  

This gives us the solution

Vector derivatives

Q18:

e(m, c, (x1, y1,w1), (x2, y2,w2),… , (xn, yn,wn)) = w2
1(y1 − (x1m+ c))2

+ w2
2(y2 − (x2m+ c))2 +⋯+ w2

n(yn − (xnm+ c))2 = ∥We∥2

∥We∥2 = (We)⊤(We) = e⊤W⊤We

x = [x1;… ;xn]
y = [y1;… ; yn]

e = y− (xm+ 1nc)

1n
m = [m; c] x 1n

X = [x,1n] ∈ Rn×2

e = y−Xm

∥We∥2 = (y−Xm)⊤W⊤W(y−Xm)

= y⊤W⊤Wy+m⊤X⊤W⊤WXm− 2y⊤W⊤WXm

m

arg min
m

e(m) = y⊤W⊤Wy+m⊤X⊤W⊤WXm− 2y⊤W⊤WXm

m ∈ Rp y ∈ Rn W ∈ Rn×n

X ∈ Rn×p

0⊤ = (y⊤W⊤Wy+m⊤X⊤W⊤WXm− 2y⊤W⊤WXm)

= 2m∗⊤X⊤W⊤WX − 2y⊤W⊤WX

(1)

(2)

∂
∂m

m∗ = (X⊤W⊤WX)−1X⊤W⊤Wy



 Find the derivative of  with respecto to .

You can assume  to be symmetric. The size of vectors are 

A18

Q19:

 Find the quadratic approximation of the following function near the point :

You can assume  to be symmetric. The size of vectors are 

A19:

The quadratic approximation by Taylor series is:

Q20

 Show that for   

f(x) = (x− a1)⊤A(x− a2) x

A ∈ Rn×n

x,a1,a2,a3,b ∈ Rn

f(x) = (x− a1)⊤A(x− a2)

= x⊤Ax− (a1 + a2)⊤Ax+ a⊤1 a2

= 2x⊤A − (a1 + a2)
⊤A

= (2x− (a1 + a2))⊤A

∂f
∂x

x0

f(x) = ((x− a1)⊤A(x− a2)) ((x− a3)⊤b)

A ∈ Rn×n

x,a1,a2,a3,b ∈ Rn

[∇xf(x)]⊤ = ((x− a1)⊤A(x− a2))b⊤ + ((x− a3)⊤b) ((2x− (a1 + a2))⊤A)

∇xf(x) = ((x− a1)⊤A(x− a2))b + ((x− a3)⊤b) (A(2x− (a1 + a2)))

∇xf(x0) = ((x0 − a1)⊤A(x0 − a2))b + ((x0 − a3)⊤b) (A(2x0 − (a1 + a2)))

Hf(x) = ∇2
xf(x) = b(2x− (a1 + a2))⊤A + (A(2x− (a1 + a2)))b⊤

+ ((x− a3)⊤b) (2A)

Hf(x0) = ∇2
xf(x0) = b(2x0 − (a1 + a2))⊤A + (A(2x0 − (a1 + a2)))b⊤

+ ((x0 − a3)⊤b) (2A)

f(x) = f(x0) + [∇xf(x0)]⊤(x− x0) + (x− x0)⊤Hf(x0)(x− x0)

c,x ∈ Rn



A20: Let  and 

Let  

By Jacobian convention, we arrange the partial derivatives in a row vector:

Q21:

Show that for , 

A21: Let 

Let , where  are the row

vectors of matrix .

Then

c⊤x = c⊤ (3)
∂
∂x

c = [c1, c2,… , cn] x = [x1,x2,…xn]

f(x) = c⊤x = c1x1 + c2x2 +… cnxn

= c1

= c2

⋮

= cn

∂f

∂x1
∂f
∂x2

∂f
∂xn

c⊤x = [ … ]
= [ c1 c2 … cn ] = c⊤

(4)

(5)

∂
∂x

∂f

∂x1

∂f

∂x2

∂f

∂xn

A ∈ Rn×n x ∈ Rn

Ax = A (6)
∂
∂x

x = [x1;x2;…xn]

A =

⎡⎢ ⎢ ⎢ ⎢ ⎢⎣

a11 a12 … a1n

a21 a22 … a2n

⋮ ⋮ ⋱ ⋮
an1 an2 … ann

⎤⎥ ⎥ ⎥ ⎥ ⎥⎦
=

⎡⎢ ⎢⎢ ⎢ ⎢⎣

a⊤1

a⊤2

⋮

a⊤n

⎤⎥ ⎥⎥ ⎥ ⎥⎦
a⊤i ∈ R1×n

A

Ax =

⎡⎢ ⎢ ⎢⎢ ⎢⎣

a⊤1

a⊤2

⋮

a⊤n

⎤⎥ ⎥ ⎥⎥ ⎥⎦
x =

⎡⎢ ⎢ ⎢⎢ ⎢⎣

a⊤1 x

a⊤2 x

⋮

a⊤nx

⎤⎥ ⎥ ⎥⎥ ⎥⎦



Let

By Jacobian convention we arrange the partial derivatives of each function component

column-wise

Q22:

 Use vector-derivative chain rule:

,

for any function  and .

Show that for  amd 

A22:

For product of any two vectors

If  is a function of , then

f(x) =

⎡⎢⎢⎢⎢⎢⎣

f1(x)
f2(x)

⋮
fn(x)

⎤⎥⎥⎥⎥⎥⎦
= Ax =

⎡⎢ ⎢ ⎢⎢ ⎢⎣

a⊤1 x

a⊤2 x

⋮

a⊤nx

⎤⎥ ⎥ ⎥⎥ ⎥⎦

=

⎡⎢ ⎢⎢ ⎢ ⎢ ⎢⎢ ⎢⎣
⋮

⎤⎥ ⎥⎥ ⎥ ⎥ ⎥⎥ ⎥⎦
=

⎡⎢ ⎢ ⎢⎢ ⎢ ⎢ ⎢⎢⎣
⋮

⎤⎥ ⎥ ⎥⎥ ⎥ ⎥ ⎥⎥⎦
=

⎡⎢ ⎢ ⎢ ⎢⎢⎣

a⊤1

a⊤2

⋮

a⊤n

⎤⎥ ⎥ ⎥ ⎥⎥⎦
= A

∂f(x)

∂x

∂f1(x)

∂x
∂f2(x)

∂x

∂fn(x)

∂x

∂a⊤
1
x

∂x

∂a⊤
2
x

∂x

∂a⊤
2
x

∂x

=
∂f(g(x))

∂x
∂f
∂g

∂g
∂x

g : Rn ↦ R
m f : Rm ↦ R

o

x ∈ Rn A ∈ Rn×n

x⊤Ax = x⊤(A⊤ +A) (7)
∂
∂x

x⊤y = y⊤ (8)
∂
∂x

y x

x⊤y = y⊤ +( x⊤y)( )
= y⊤ + x⊤ ( )

(9)

(10)

∂
∂x

∂
∂y

∂y
∂x

∂y
∂x



If , then

and

Perceptron

Q23:

You are given 2D points and corresponding labels as a training dataset 

, where ,  and the labels 

. Use the model  to construct a loss (or error)

function. Find the gradient of the loss function with respect to the vector .

A23 

If , then we can write

    For the entire dataset, we have  and , 

 the average error is:

and the average gradient is:

y = Ax

= Ax = A
∂y
∂x

∂
∂x

x⊤Ax = y⊤ + x⊤ ( ) = x⊤A⊤ + x⊤A = x⊤(A⊤ +A)
∂
∂x

∂y
∂x

{(x1, y1, l1), (x2, y2, l2),… , (xn, yn, ln)} xi ∈ R yi ∈ R
li ∈ {−1, 1} l̂ i = sign(yi − (mxi + c))

m = [m; c]

e(yi,xi;m, c) = { 0 if sign(yi −mxi + c) = li
|yi − (mxi + c)|   if  sign(yi −mxi + c) ≠ li

e(yi,xi;m, c) = { 0 if sign(yi −mxi + c) = li
|yi − (mxi + c)|   if  sign(yi −mxi + c) ≠ li

m = [m
c
]

e(yi,xi;m) = { 0   if  [xi 1 ]m = li
|yi − [xi 1 ]m|   if  [xi 1 ]m ≠ li

li ∈ {−1, 1}

e(yi,xi;m) = max{0,−li(yi − [xi 1 ]m)}

∇me(yi,xi;m) = max{0, li([xi 1 ])}

y = [y1;… ; yn] x = [x1;… ;xn]
l = [l1;… ; ln]

e(x,y;m) = 1⊤n max{0,−l ⊙ (y− [ x 1n ]m)}
1
n



Q24

You are given p-D points  and corresponding labels as a training dataset 

, where , and the labels . Use

the model  to construct a loss (or error) function. Find the

gradient of the loss function with respect to the vector .

A24:

If , then we can write

 For the entire dataset, we have ,  the average

error is:

and the average gradient is:

Autograd

∇⊤
me(x,y;m) = 1⊤n max{0, l ⊙ ([ x 1n ])}

1
n

xi ∈ R
p

{(x1, l1), (x2, l2),… , (xn, ln)} xi ∈ R
p li ∈ {−1, 1}

l̂ i = sign(x⊤
i
m+m0))

q = [m0;m]

e(m0,m;xi) = { 0 if sign(x⊤
i
m+m0) = li

|x⊤
i
m+m0| if sign(x⊤

i
m+m0) ≠ li

e(yi,xi;m, c) = { 0   if  sign(x⊤
i
m+m0) = li

|x⊤
i
m+m0|   if  sign(x⊤

i
m+m0) ≠ li

q = [m0

m
]

e(m0,m;xi) = { 0   if  [ 1 x⊤
i
] q = li

| [ 1 x⊤
i
] q|   if  [ 1 x⊤

i
] q ≠ li

li ∈ {−1, 1}

e(m0,m;xi) = max{0,−li([ 1 x⊤
i
] q)}

∇me(m0,m;xi) = max{0,−li([ 1 x⊤i ])}

X = [x⊤1 ;… ;x⊤n ] l = [l1;… ; ln]

e(m;X, l) = 1⊤n max{0,−l ⊙ ([ 1n X ]q)}
1
n

∇⊤
me(m;X, l) = 1⊤n max{0, l ⊙ ([ 1n X ])}

1
n



Q25:

Describe the Forward mode and reverse mode differentitation and their differences?

Consider the following functions which one of the two will you use for:

1. 

2. 

A25:

1. Forward mode and reverse mode differentiation differ by the order in which the chain

rule jacobians get multiplied. For example, if you are required to take the derivative of

the the function by chain rule , where , ,

and  then by chain rule:

There are two options for multipliying the jacobians

a. Forward mode

b. Reverse mode

Q26:

How many operations (additions and multiplications) does it take to multiple two matrices of

size  and ?

A26: .

There exist matrix algorithms that are faster than . They speed up matrix

multiplication to .

Q27:

 Write the reverse mode vector-Jacobian product(s) for the following operations:

1.  where 

2.  where  and 

f(x) : R2 ↦ R
100

f(x) : R100 ↦ R
2

f(g(h(x))) h : Rn ↦ R
m g : Rm ↦ R

o

h : Ro ↦ R
p

=
∂f
∂x

∂f
∂g

∂g
∂h

∂h
∂x

( ( ))∂f
∂g

∂g
∂h

∂h
∂x

(( ) )∂f
∂g

∂g
∂h

∂h
∂x

A ∈ Rm×n B ∈ Rn×p

mp(2n− 1)

O(n3)
O(n2.7)

f(x) = exp(x) x ∈ R
f(α,v) = αv α ∈ R v ∈ Rn



































3.  where  and 

4.  where  and 

5.  where  and 

A27:

 Let the vector be 

1. 

2. Let the vector be . Then,

 and 

3. Let the vector be . Then

 and 

Define matrix multiplication to be: Let

then,

4. Let the vector be . Then

 and .

5. Let the vector be . Then

 and 

f(a,b) = a⊤b a ∈ Rn b ∈ Rn

f(A,b) = Ab A ∈ Rm×n b ∈ Rn

F (A,B) = AB A ∈ Rm×n B ∈ Rn×p

∂l
∂f

= exp(x)∂l
∂x

∂l
∂f

∂l
∂f

= v∂l
∂α

∂l
∂f

= αIn×n
∂l
∂v

∂l
∂f

∂l
∂f

= b⊤∂l
∂a

∂l
∂f

= a⊤∂l
∂b

∂l
∂f

A =

⎡⎢ ⎢ ⎢ ⎢ ⎢⎣

a11 a12 … a1n

a21 a22 … a2n

⋮ ⋮ ⋱ ⋮

am1 am2 … amn

⎤⎥ ⎥ ⎥ ⎥ ⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

…

…

⋮ ⋮ ⋱ ⋮

…

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
∂l
∂A

∂l
∂a11

∂l
∂a12

∂l
∂a1n

∂l
∂a21

∂l
∂a22

∂l
∂a2n

∂l
∂am1

∂l
∂am2

∂l
∂amn

∂l
∂f

= A∂l
∂b

∂l
∂f

=
⊤
b⊤∂l

∂A
∂l
∂f

∈ Rp×m∂l
∂F

= B⊤∂l
∂A

∂l
∂F

= A⊤∂l
∂B

∂l
∂F



Q28:

Write the forward-mode Jacobian-vector product(s) for the following operations

1.  where 

2.  where  and 

3.  where  and 

4.  where  and 

5.  where  and 

A28:

Let the vector be 

1. 

2. Let the vectors be  and . Then,

3. Let the vectors be  and . Then

4. Let the vectors be  and . Then

5. Let the vectors be  and . Then

f(x) = exp(x) x ∈ R
f(α,v) = αv α ∈ R v ∈ Rn

f(a,b) = a⊤b a ∈ Rn b ∈ Rn

f(A,b) = Ab A ∈ Rm×n b ∈ Rn

F (A,B) = AB A ∈ Rm×n B ∈ Rn×p

∂x
∂t

= exp(x)∂f

∂t
∂x
∂t

∂α
∂t

∂v
∂t

= v + αIn×n
∂f
∂t

∂α
∂t

∂v
∂t

∂a
∂t

∂b
∂t

= b⊤ + a⊤
∂f

∂t
∂a
∂t

∂b
∂t

∂A
∂t

∂b
∂t

= b +A∂f
∂t

∂A
∂t

∂b
∂t

∂A
∂t

∂B
∂t

= B +A∂F
∂t

∂A
∂t

∂B
∂t




