Probability theory and machine learning basics

Machine learning as optimization
D= \{(\frac{1}{2}, \frac{1}{2},
Training data
Choose a model
$\hat{y} = f(z; \theta) = \text{either a linear model}$
l(y,y) = orror or loss for predicting y when time value is y
$L(D; \theta) = \sum_{i=1}^{\infty} l(\hat{y}_i, y_i) = \sum_{i=1}^{\infty} l(f(\underline{x}_i; \theta), y_i)$
0" = arg min $L(D;0)$ Training loss
(1) Classify handwritten disvit
Lo 6000 Handwritten images
What matters is the loss/performance on previously unseen images
What matters is the loss/performance on priviously unseen images) ata Training data (only optimize on training data) ata Test data (proxy for real world)

Probability is a neasure/quantification of uncertainty
Sources of uncertainty in machine learning
Handwritten 000 0
Data
we assume that all data is generated by some data-generating process
by some data-generating process
Lo Incomplete observability
Lo Incomplete modeling [0] a not taking factors into account
Lo Inherent waterturninty in the physical process
Probability theory
Defl Sample Shau
Eg 2-com tosses. HIT
SHH, HT TH, TTS
Souple Space = D is the set of all possible

Ey Rollofadia with 6-sides $R = \{1, 2, ... 6\}$ Event Shace ? is the shace of potential results of the experiment Roll of dice Ego Roll of dice Event: whethe we got dice > 5
A: \(\) d \(\) = \(\) Event Share is all possible value of such Events FgO 2 com toss A={HH} CD A= contains 1 tain = {HT, TT, THS C.D For discrete sample shace Frent shaw is the howerself somphle Event = $A = P(\Omega) = 2^{\Omega}$ show event show show AC 12 Del3 Parabability neasure P(A) e [0,1] Event ·AEA

Event

Def 4	Sample shace,	Event Space,	Probablets measure	
Probability space				
Def 3	Probability means	v u consister	it i	
Kolmogravis axioms	(a) $P(A) \in [0,1]$ (b) $P(JZ) = 1$ (c) $A, AZ = \emptyset$ then $P(A) + P(Az)$ countable injunte s $P(J, A_n) = \emptyset$	ets $A_{1} = P(A_{1} \cup A_{2})$ ets $A_{2} = A_{3}$.5 dia = {5,6} = {4,3} +1 JAz= {4,3,5} An, NAnz= Ø	
VW o)	atable infinity - If	you can assi	gna to all	
uncoun	e-s. No	he clements atural numbes numbers	(1,	

Def 5 Random variable (RV)
eg 2 com toss $SL = \{HH, HT, TH, TT\}$ RV maps an event to a set of numbers of Disorte

ACIL

1- $X\left(\{HT,TH,TT\}\right) = \{1,2,3\}$ e.g. continuous RV: weight of mia $\mathcal{I} = [0, \infty)$ Cloed open

A $\in [170, 171]$ Event share of cont. RV P(w=[70.0]) 0 A= the set of all unions and intersections Borrel of countably infinite intervals (closed) Set Different from the power set of all head numbers

O Probability Mass Junction (PMF) is only defined for discrete RV JZ= & 1, -..., 6 9 $P(x=1) = p_1$ P(x=2) = PL = = P(X=2)=1 $P(X=x) = \beta_{2}$ PMF

P(X=x)

P (P(x)) Notational chort cuts Probability Density function (PDF) only defined for continuous RV if ixell X is unfinious RV P(X = X) = 0 $P(a \leq X \leq b) = P(X \in [a,b]) = \int_{a}^{b} \int_{a}^{b} \int_{a}^{b} dx$ A function $f: |R \rightarrow (0, \infty)$ f(x) > 0 4 x e IR

b)
$$\int f(x) dx = 1$$

() $P(a \le X \le b) = \int f(x) dx$
 $\frac{170.2}{10 dx} = \frac{10(170.2-170.1)}{170.1}$

(ownor continuous distribution

 $N(x; \mu, \sigma) = \int \frac{1}{2\pi} \sigma \left(\frac{x + \mu - \frac{x}{2} - \mu}{2} \right) dx$
 $= 1$
 $2 = \mu = \exp(0) - 1$
 $= \frac{1}{2\pi} \tau \qquad = 2$

(unubdive density function

 $P(a \le X \le b) = \int f(x) dx$
 $= \frac{x}{2} \int f(x) dx$
 $= \frac{x}{2} \int f(x) dx$
 $= \frac{x}{2} \int f(x) dx$

CDF

Ly Distrete $F(x,y)=P(X \in \mathcal{H}, Y \in \mathcal{Y}) = \sum_{\alpha \leq x} \sum_{b \leq y} P(x = a, y = b)$ Ly Continuo is $F_{xy}(x,y) = P(X \in \mathcal{H}, Y \in \mathcal{Y}) = \int_{-\infty}^{\infty} \int_{-\infty}^{y} f(x,y) dy dx$