Probability theory and machine learning basics

Machine learning as optimization
$D = \{(\underline{z}_{1}, \underline{y}_{1}) - \dots + (\underline{z}_{n}, \underline{y}_{n})\}$ $L(D; 0)$
Training data
Choose a model
$\hat{y} = f(\Sigma; \theta) = \text{either a linear model}$
l(y,y) = ornor or loss for predicting y when time value is y
$L(D; \theta) = \sum_{i=1}^{\infty} l(\hat{y}_i, y_i) = \sum_{i=1}^{\infty} l(f(\underline{x}_i; \theta), y_i)$
0" = arg min L(D;0) Teraining loss
(1) Classify handwritten disvit
Lo 6000 Handwritlen images
What matters is the loss/performance on privally unseen mages
What matters is the loss/performance on previously unseen images) ata Training data (only optimize on training data) ata Test data (proxy for real world) performance

Probability is a neasure/quantification of uncertainty
Sources of uncertainty in machine learning
Handwritten 000 0
Data
we assume that all data is generated by some data-generating process
by some data-generating process
Lo Incomplete observability
Lo Incomplete modeling [0] a not taking factors into account
Lo Inherent waterturninty in the physical process
Probability theory
Defl Sample Shau
Eg 2-com tosses. HIT
SHH, HT TH, TTS
Souple Space = D is the set of all possible

Ey Rollofadia with 6-sides $R = \{1, 2, ... 6\}$ Event Shace ? is the shace of potential results of the experiment Roll of dice Ego Roll of dice Event: whethe we got dice > 5
A: \(\) d \(\) = \(\) Event Share is all possible value of such Events FgO 2 com toss A={HH} CD A= contains 1 tain = {HT, TT, THS C.D For discrete sample shace Frent shaw is the howerself somphle Event = $A = P(\Omega) = 2^{\Omega}$ show event show show AC 12 Del3 Parabability neasure P(A) e [0,1] Event ·AEA

Event

Def 4	Sample shace,	Event Space,	Probablets measure
	Probability	shace	
Def 3	Probability means	v u consister	it iy
Kolmogravis axioms	(a) $P(A) \in [0,1]$ (b) $P(JZ) = 1$ (c) $A, \Lambda A_Z = \emptyset$ then $P(A) + P(A_Z)$ countable injunte s $P(J) : A_{n} = \emptyset$	ets $A_{1} = P(A_{1} \cup A_{2})$ ets $A_{2} = A_{3}$.5 dia = {5,6} = {4,3} +1 JAz= {4,3,5} An, NAnz= Ø
VW o)	atable infinity - If	you can assi	gna to all
uncoun	e-s. No	he clements atural numbes numbers	(1,

Def 5 Random variable (RV) eg 2 com toss $SL = \{HH, HT, TH, TT\}$ RV maps an event to a set of numbers Sountinuous
ACSI $X\left(\{HT,TH,TT\}\right) = \{1,2,3\}$ e.g. continuous RV: weight of mia $\mathcal{I} = [0, \infty)$ Cloed open

A $\in [170, 171]$ Event share of cont. RV P(w=[70.0]) 0 A = the set of all unions and intersections Borrel of countably infinite intervals (closed) Set Different from the power set of all head numbers

O Probability Mass Junction (PMF) is only defined for discrete RV JZ= & 1, -..., 6 9 $P(x=1) = p_1$ P(x=2) = PL = = P(X=2)=1 $P(X=x) = \beta_{2}$ PMF

P(X=x)

P IP(x) Notational chart cuts Probability Density function (PDF) only defined for continuous RV if ixell X is unfinious RV P(X = X) = 0 $P(a \leq X \leq b) = P(X \in [a,b]) = \int_{a}^{b} \int_{a}^{b} \int_{a}^{b} dx$ A function $f: |R \rightarrow (0, \infty)$ f(x) > 0 4 x e IR

b)
$$\int f(x) dx = 1$$

() $P(a \le X \le b) = \int f(x) dx$
 $\frac{170.2}{10 dx} = \frac{10(170.2-170.1)}{170.1}$

(ownor continuous distribution

 $N(x; \mu, \sigma) = \int \frac{1}{2\pi} \sigma \left(\frac{x + \mu - \frac{x}{2} - \mu}{2} \right) dx$
 $= 1$
 $2 = \mu = \exp(0) - 1$
 $= \frac{1}{2\pi} \tau = 2$

(unabolive density function

 $P(a \le X \le b) = \int f(x) dx$
 $= \int_{-\infty}^{\infty} f(x) dx$
 $= \int_{-\infty}^{\infty} f(x) dx$

CDF

Ly District
$$F_{xy}(x,y) = P(X \in \mathcal{X}, Y \in y) = \sum_{\alpha \leq x} \sum_{b \in y} P(X = a, y = b)$$

Ly Continuous $F_{xy}(x,y) = P(X \in \mathcal{X}, Y \in y) = \int_{0}^{x} \int_{0}^{y} f(x,y) dy dx$

Conditioned Probability

$$P(X|Y) = P(X,Y)$$

Prob of X given Y

Prob of X given Y given Y

Prob of X given Y g

Marymalization
$$\overline{363}$$

$$P(V=1) = P(D=1, V=1) + P(D=0, V=1)$$

$$P(D=1) - P(D=1, V=0) + P(D=1, V=1)$$

$$P(X) = \sum_{y \in \mathcal{R}_{Y}} P(X, Y = y) \qquad \text{Disorate } RV$$

$$P(X) = \int_{\mathcal{R}_{Y}} f(X, Y = y) \, dy \qquad \text{Informacion } RV$$

$$P(X, Y) = P(Y|X) P(X) \qquad \Rightarrow P(Y|X) P(X) = P(X|Y) R(Y)$$

$$P(X, Y) = P(X|Y) P(Y) \qquad \Rightarrow P(Y|X) P(X) = P(X|Y) R(Y)$$

$$P(X, Y) = P(X|Y) P(Y) \qquad \Rightarrow P(X|Y) P(X)$$

$$P(X|X) = P(X|X) P(X)$$

$$P(X|X) = P(X|X|X) P(X)$$

$$P(X|X|X) = P(X|X|X) P(X)$$

$$P(X|X|X) = P(X|X|X) P(X)$$

$$P(X|X|X) = P(X|X|X) P(X|X|X)$$

$$P(X|X|X) = P(X|X|X)$$

 $P(D|S) \sim P(S|D) P(D)$ $S \sim f(D) \rightarrow D \sim f(S)$

Probablistical Independence
$X \perp \!\!\!\perp Y$ are independent iff $P(X,Y) = P(X)P(Y)$
P(Y X) = P(Y)
$\rho(x y) = \rho(x)$
$P(X_1, \dots, X_n) = P(X_1) P(X_2) - \dots P(X_n)$
Identical Rondon Variable
Identically distributed RU Probability measure
inRV (I, F, Px,)) as the Parobability Shace
in RV with (R, F, Pxz) on The Parob. shace Px = Pxz Event shace Event shace
Px, =Px2 Eventshau
f IID: Identically Independentally distributed
X1, X2 Xn are RV
Ls(i) Independent
3 Identically distributed

D= { (21, y,), (22, y2) (m, yn) Z, 1 Z2 2, ILZn $P(D|O) = P(z_1|O)P(z_2|O) - P(z_n|O)$ likelihood Conditional independence P(X,Y|Z) = P(X|Z)P(Y|Z)XII Y given Z P(XY) = P(X)P(Y)Does not until (ough=X) (Fever=Y Covid = Z

P(Y/X) = high does not inply X causes Y (P(Y/X)) Con thinkof as non-lineal correlation $E_{X}[g(X)] = \sum_{X \in \mathcal{X}_{X}} P(X=X)g(X)$ Disorete RV = 1 $\mathbb{E}_{x}[g(x)] = \int_{x}^{x} f(x) g(x) dx$ Cont RV

XERR Sample near

X1, X2 --- Xn

$$M(X_{1}, --X_{1}) = \frac{1}{N} \sum_{i=1}^{N} X_{i}$$

$$\lim_{X \to A} \frac{1}{N} \sum_{i=1}^{N} X_{n} = \frac{1}{N} \sum_{i=1}^{N} X_{i}$$

$$\lim_{X \to A} \frac{1}{N} \sum_{i=1}^{N} X_{n} = \frac{1}{N} \sum_{i=1}^{N} X_{i}$$

$$\lim_{X \to A} \frac{1}{N} \sum_{i=1}^{N} X_{i} = \frac{1}{N} \sum_{i=1}^{N} X_{i}$$

$$\lim_{X \to A} \frac{1}{N} \sum_{i=1}^{N} X_{i} = \frac{1}{N} \sum_{i=1}^{N} X_{i}$$

$$\lim_{X \to A} \frac{1}{N} \sum_{i=1}^{N} X_{i} = \frac{1}{N} \sum_{i=1}^{N} X_{i}$$

$$\lim_{X \to A} \frac{1}{N} \sum_{i=1}^{N} X_{i} = \frac{1}{N} \sum_{i=1}^{N} X_{i}$$

$$\lim_{X \to A} \frac{1}{N} \sum_{i=1}^{N} X_{i} = \frac{1}{N} \sum_{i=1}^{N} X_{i}$$

$$\lim_{X \to A} \frac{1}{N} \sum_{i=1}^{N} X_{i} = \frac{1}{N} \sum_{i=1}^{N} X_{i}$$

$$\lim_{X \to A} \frac{1}{N} \sum_{i=1}^{N} X_{i} = \frac{1}{N} \sum_{i=1}^{N} X_{i}$$

$$\lim_{X \to A} \frac{1}{N} \sum_{i=1}^{N} X_{i} = \frac{1}{N} \sum_{i=1}^{N} X_{i}$$

$$\lim_{X \to A} \frac{1}{N} \sum_{i=1}^{N} X_{i} = \frac{1}{N} \sum_{i=1}^{N} X_{i}$$

$$\lim_{X \to A} \frac{1}{N} \sum_{i=1}^{N} X_{i} = \frac{1}{N} \sum_{i=1}^{N} X_{i}$$

$$\lim_{X \to A} \frac{1}{N} \sum_{i=1}^{N} X_{i} = \frac{1}{N} \sum_{i=1}^{N} X_{i}$$

$$\lim_{X \to A} \frac{1}{N} \sum_{i=1}^{N} X_{i} = \frac{1}{N} \sum_{i=1}^{N} X_{i}$$

$$\lim_{X \to A} \frac{1}{N} \sum_{i=1}^{N} X_{i} = \frac{1}{N} \sum_{i=1}^{N} X_{i}$$

$$\lim_{X \to A} \frac{1}{N} \sum_{i=1}^{N} X_{i} = \frac{1}{N} \sum_{i=1}^{N} X_{i}$$

$$\lim_{X \to A} \frac{1}{N} \sum_{i=1}^{N} X_{i} = \frac{1}{N} \sum_{i=1}^{N} X_{i}$$

$$\lim_{X \to A} \frac{1}{N} \sum_{i=1}^{N} X_{i} = \frac{1}{N} \sum_{i=1}^{N} X_{i}$$

$$\lim_{X \to A} \frac{1}{N} \sum_{i=1}^{N} X_{i} = \frac{1}{N} \sum_{i=1}^{N} X_{i}$$

$$\lim_{X \to A} \frac{1}{N} \sum_{i=1}^{N} X_{i} = \frac{1}{N} \sum_{i=1}^{N} X_{i}$$

$$\lim_{X \to A} \frac{1}{N} \sum_{i=1}^{N} X_{i} = \frac{1}{N} \sum_{i=1}^{N} X_{i}$$

$$\lim_{X \to A} \frac{1}{N} \sum_{i=1}^{N} X_{i} = \frac{1}{N} \sum_{i=1}^{N} X_{i}$$

$$\lim_{X \to A} X_{i} = \frac{1}{N} \sum_{i=1}^{N} X_{i}$$

$$D = \{1, 2, 7, 4, 5, 6\}$$

Front Spau= $\{3, \\ \{15, \{27, \\ \{1, 25, \{2, 3\}\}\}\}$

F= 2
$$\times$$
Probability measure
$$P_{X}(X=X) = \frac{1}{6}$$

$$F_{X}(X) = \sum_{x \in X} P(X=x) x = \sum_{x \in X} x$$

$$V_{\chi}[g(\chi)] = \mathbb{E}_{\chi}[g(\chi) - \mathbb{E}_{\chi}[g(\chi)]]$$
expectation

Vector Variance Covariance Matrix

$$V_{X}[X] = I_{X}[X - I_{X}[X])(X - I_{X}[X])$$

outer product

Machine learning in optimization

$$D = \{ (2, y) - - (2n, yn) \}$$
 Dataset $\hat{y}_1 = f(2, y)$ model

l(y, ý) loss function

$$O^{\dagger} = \text{ arg min} \sum_{i=1}^{\infty} l(y_i, f(2_i, \theta))$$

$$O = \text{ predicted label}$$

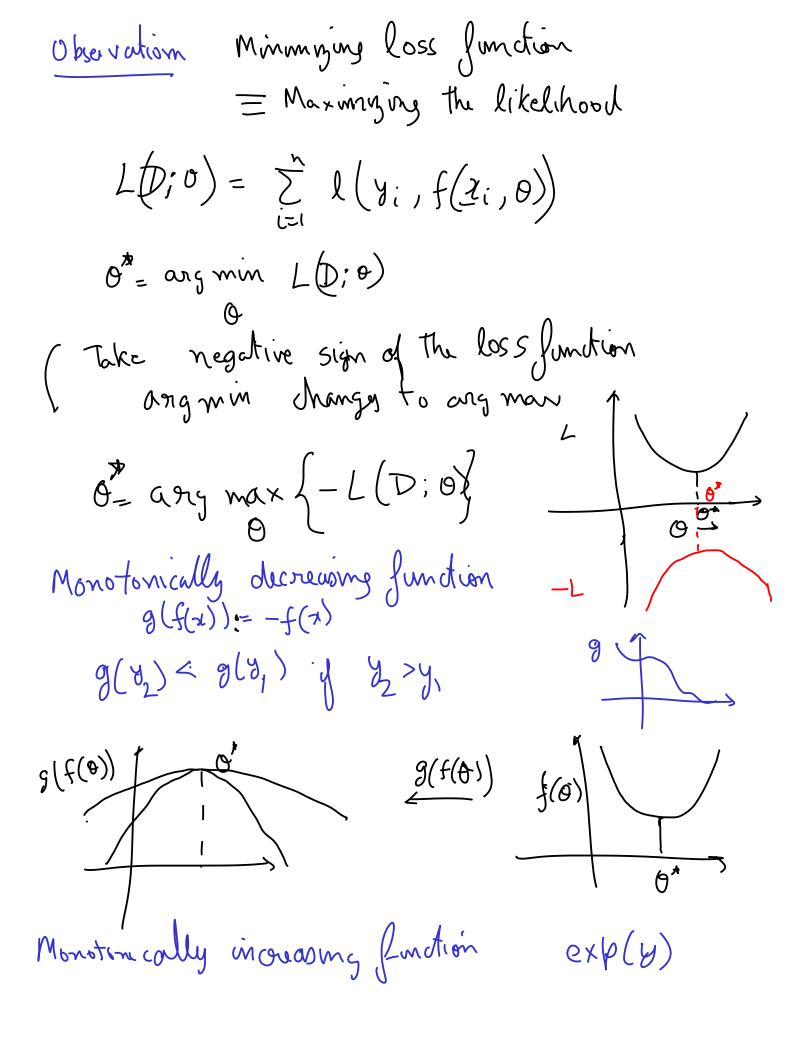
$$O = \text{ predicted$$

Postarior P(D)

Traces

Postarior

(2+1/41/4+1)

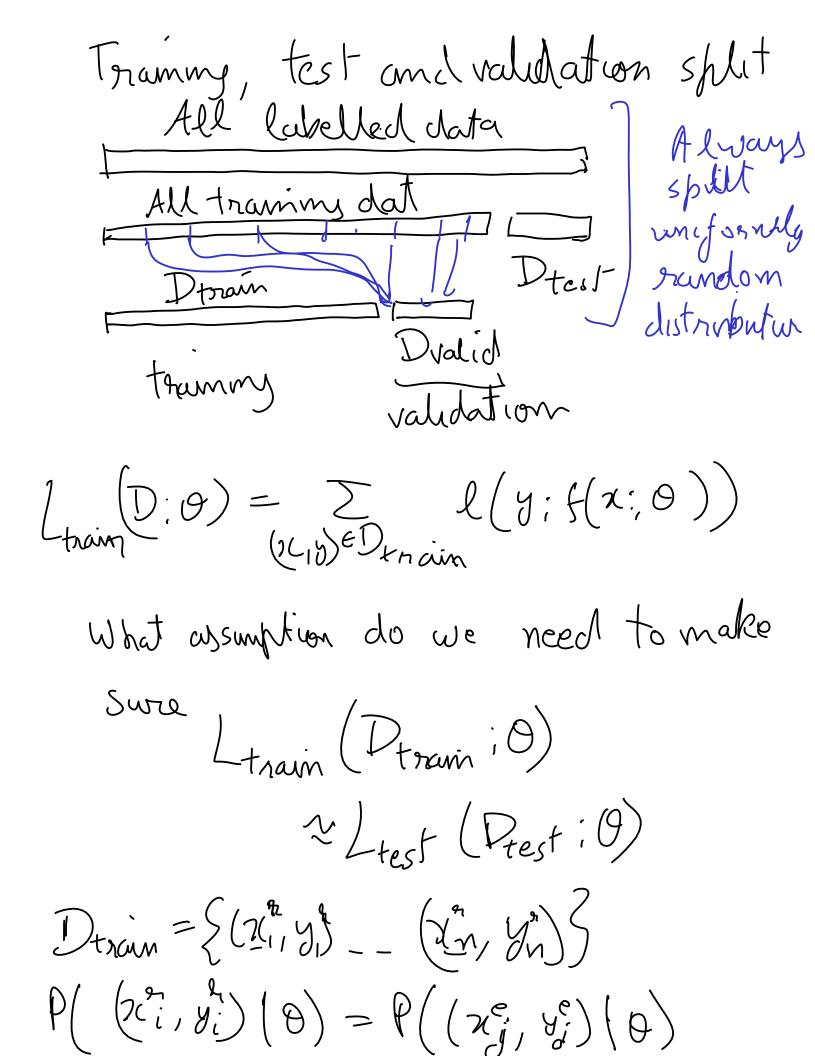


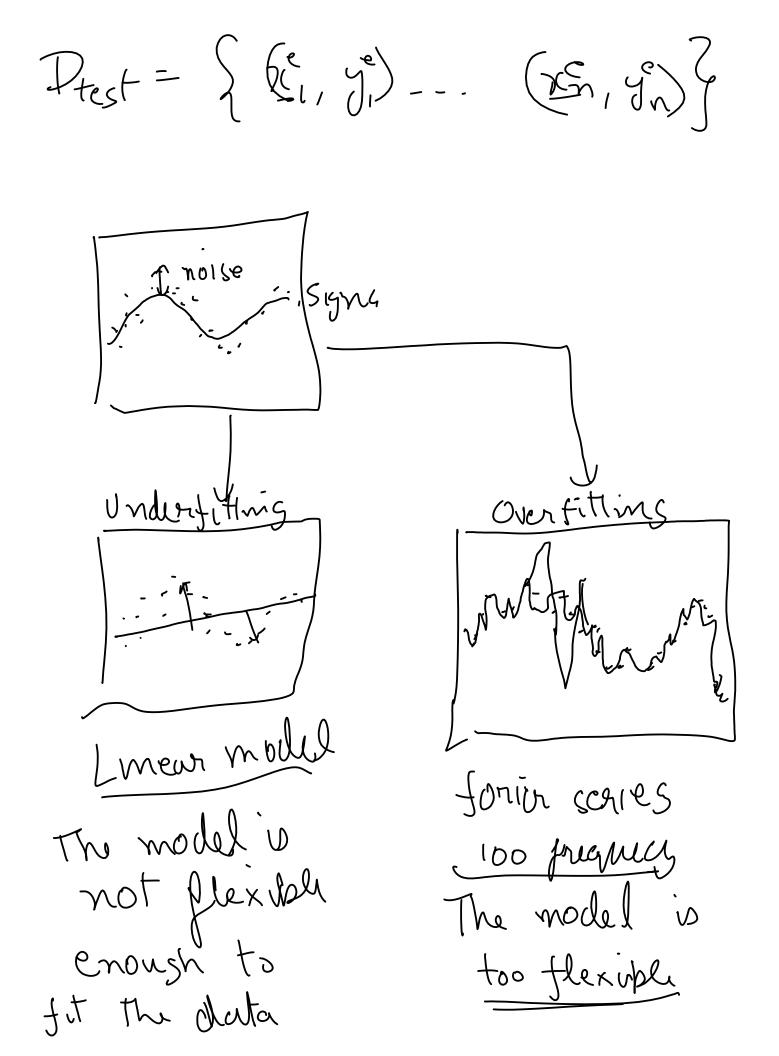
exk(y) $\hat{\theta} = \alpha g_{max} - L(D; \theta)$ $exp(-L(D; \theta))$ 6= or g max $P(D|\theta)$ 0° = org max estimation g (f(0)). is called Maxmum Likelihood estimation a-POSTERIORI estimation (MAP) 0 = wg max P(OID) Posturion - arg max P(D/0) P(0) Bayes 0 = ang min {-log P(D.10)} + {-log P(0)} Tojy = arg min (D:0) + 1R(0) = Regularizer

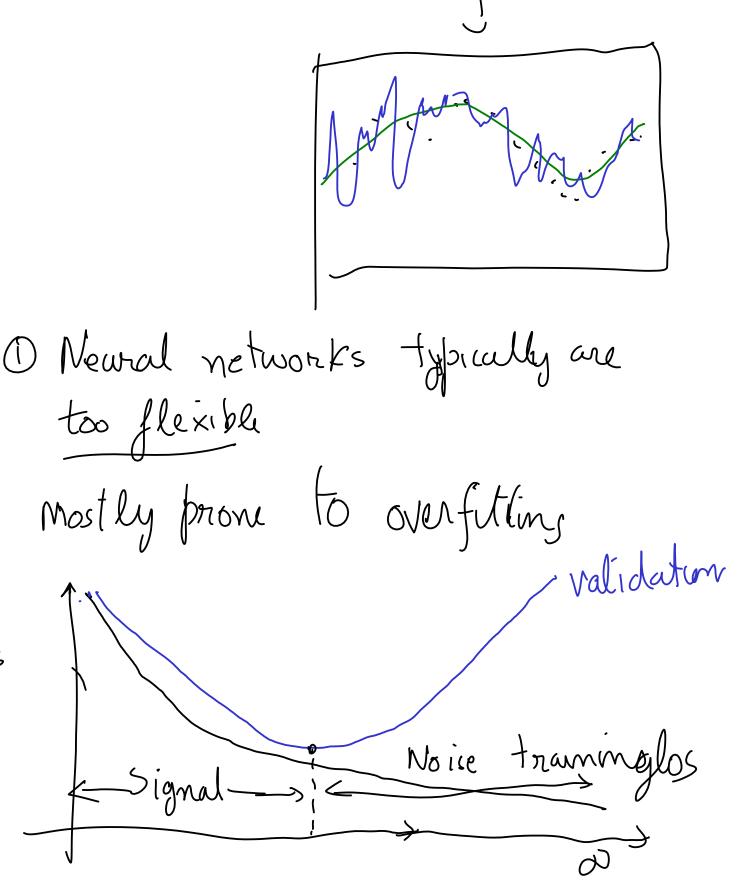
 $OR(\theta) = \|Q\|_{2}^{2}$ Example L-2 norm L-2 regularger Of Regularizers @ R(0)- 101, T-1 NOHW -1 rugulanger L-2 norm $Q = \begin{bmatrix} Q_1 \\ Q_2 \\ \vdots \\ Q_n \end{bmatrix}$ $|Q| = \begin{bmatrix} Q_1 \\ Q_2 \\ \vdots \\ Q_n \end{bmatrix}$ Example Least square reconsion $M = \begin{bmatrix} m \\ c \end{bmatrix} \quad X = \begin{bmatrix} x_1 & 1 \\ x_n & 1 \end{bmatrix} \quad Y = \begin{bmatrix} y_1 \\ y_n \end{bmatrix}$ Salt concentration $L(D: M) = \|y - X_m\|_2^2$ $R(\underline{m}) = ||\underline{m}||_{L}^{2}$ Road are a Regularized Leust square regression

Take away 2

Regularizers in sugularized regression can be interpreted as Priors in Bayes theosem

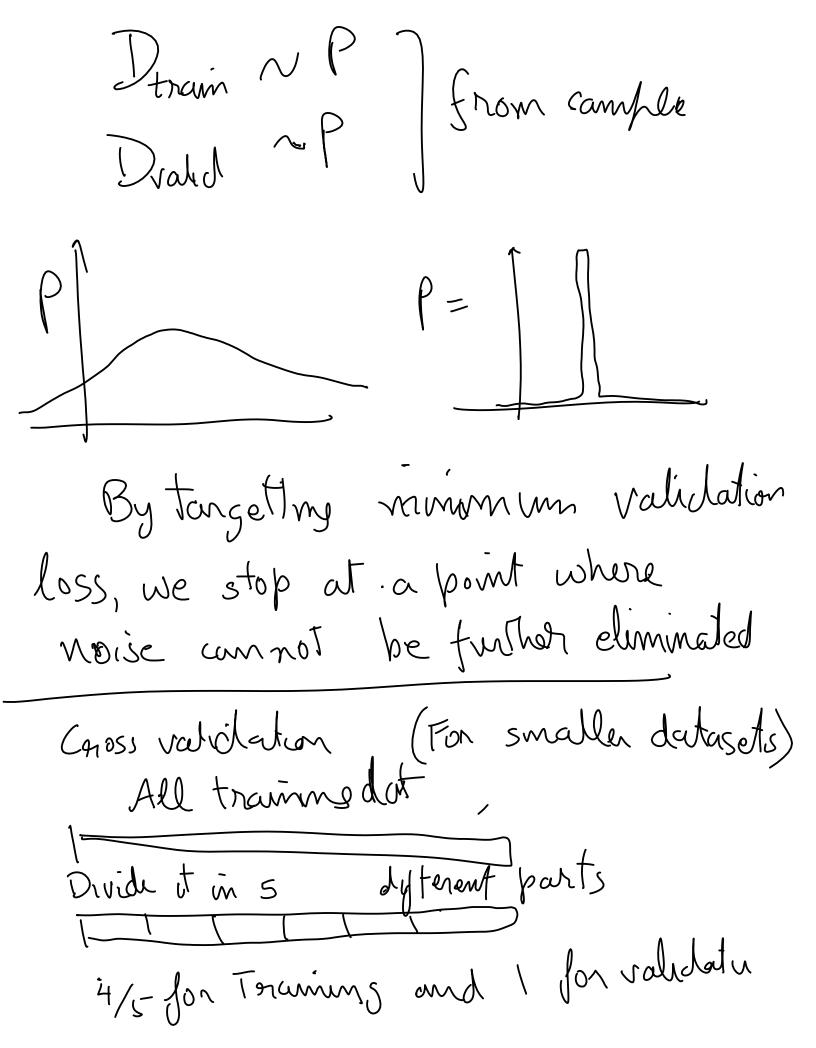






time.

Loss



Trumy (//, Trumis)

Valid

Valid

I

Why is it so hard to choose a model!

- Is overfithing always going to happy
- Can we just choose the biggest NW

Jon all problems?

_ Is there a correct model for all problems?

The answer is NO

NO FREE WINCH THEOREM

Trama

possible

Averaged over all datasets

all madels have the same accuracy