Topics
1. Pytorch basics: https://colab.research.google.com/github/wecacuee/ECE490-Neural-

Networks/blob/master//notebooks/06-pytorch/NumpyTutorial-Pytorched.ipynb

2. Autograd Mathematics: https://colab.research.google.com/github/wecacuee/ECE490-
Neural-Networks/blob/master/notebooks/03-autograd/AutogradNumpy.ipynb

3. Probability problems (below)

Probability definitions

Q1: Define Sample Space

Sample space is the set all possible of outcomes of an experiment, denoted by 2.
For example, For 2-coin tosses the sample space is
Qoo ={HH,HT,TH,TT}
For roll of a dice with 6-sides
Qaice = {1,2,3,4,5,6}

For weight measurements of an individual, the sample space is the set of all positive real
numbers

—_ Rt
QWeight =R

Q2: Define Event Space

An event is the set of outcomes that we might be interested in.
Event space is a set of subsets of the sample space.

or example, For 2-coin tosses the set of all subsets of the sample space in cluding the null
set {} and the full sample

Focon = {{}, {HHY{HT},{TH},{TT},{HH, HT},..., {HH,HT, TH,TT}}

Q

For weight measurements of an individual, the event space is be the set of all unions and
intersections of intervals (open and closed) of sample space (positive real numbers).

Fueight = 1Yi N [@ij, bij] + a;; < bij,a;; € R, b;; € R}

Q3: Define Power set
The set of all possible subsets of a set {2 is called a power set and is denoted by 2

For roll of a dice with 6-sides

2% = {{},{HH}{HT},{TH},{TT},{HH,HT},... ,:{HH, HT ,TH, TT}J}

Q

For discrete sample space, event space is the power set of the sample space.

Q4: Define Probability measure

Probability measure is a function P : F — [O, 1] that maps from event space to real
numbers between [0, 1] and satisfy the following Kolmogorov axioms

1. P(E) € [0,1] forall E € F, where F is event space
2. P(Q) = 1, where Q is sample space

3. For all disjoint set of events A, Ay (A; N Ay = ¢), the probability of union of events
is the sum of individual event probabilities:

P(A;) + P(A;) = P(A; U Ay)
when A; N Ay = ¢.

In general, for a countably infinite set of event A, Ay,... A,, ... 00,
o0 o0
PllJ4.) =) P4,
n=1 n=1
when A, N A; = oo forall i # j.

Q5: Define Probability space

The triple of sample space (2, event space F and a probability measure P : F — [0,1] is
called a probability space.

Q6: Define Random variable

A random variable is a function X : €2 — Q that maps from sample space {2 to a space of
integers Z or real numbers R (in general a measurable space), such that a preimage
X Y(B) € Q of any set of numbers B € Q exists in the sample space.

For example, a 2-coin toss:
Q={HH,HT,TH,TT}
A random variable maps the elements of sample space to a number,
X(HH)=0,X(HT)=1,X(TH)=2,X(TT) =3

By slight abuse of notation, the random variable also maps events to a set of numbers
X: F — B,

X({HT,TH,TT}) = {1,2,3}

Q7: What is the difference between discrete and continuous random variable

Discrete random variable: When the random variable maps the sample space to integers,
then the random variable is discrete.

Continuous random variable: When the random variable maps the sample space to real
numbers then the random variable is continuous.
Q8: Define Probability mass function (PMF)

For a discrete random variable (RV) the Probability mass function (PMF) is a function that
assigns probability value to every discrete value of the random variable, such that

Y P(X=z)=1
zef)
For example, a die roll
Q={1,...,6}

P(X=1)=1/6,P(X=2)=1/6,...,P(X=6)=1/6

PMF is denoted as multiple symbols P(X = z) = Px(z) = P(z)

Q9: Define probability density function (PDF)

For a continuous random variable X : 2 — R, the probability density function (PDF) is a
function fx : R — [0, 00) such that:

1. fx(x) > Oforallz € R
2. [fx(z)de =1
3. Pa< X <b) = P(X € [a,b]) = [fx(z)da

Q10: Define joint probability mass function

PX=zY=y) =P(X=z)Nn(Y =y)) =P(X==z)AND (Y =y))

Q11: Define joint probability density function

For two continuous random variable X and Y, the joint probability density function (PDF) is
afunction fxy : (R,R) — [0, 00) such that:

1 fxy(xz,y) > 0foralz,y € R
2. f]R fR fX,Y(xa y)dedy =1
3 P(a<X<bc<Y<d) =P(Xe[a,b,Ycle,d)) = [[fxy(z,y)dedy

Q12: Define cumulative distribution function

A cumulative distribution function (CDF) is F'x () is defined as
Fx(z) = P(X < z).
For a discrete random variable, CDF is the sum of probability mass function

Fx(z) = P(X <2) =Y Px(a)

a<zx

For a continuous random variable, CDF is the integral of probability density function

Fx(z) = P(X < z) /_ " 2z

Q13: Define conditional probability

Conditional probability of event A given event B is defined as

P(A,B)
P(AB) = ———
P(B)
when P(B) # 0.
Q14: State Bayes theorem
For any two events, A and B
P(B|A)P(A
pujp) — PEAPA
P(B)

Q15: State Bayes theorem in terms of likelihood, prior, evidence and
posterior

For an observable event D and a hidden event 6, the posterior P(6| D) can be estimated
using Bayes theorem in terms of likelihood P(D|6), prior P(#) and evidence P(D) as

P(6|D) = —P(i’fg(a)

Q16: Define statistical independence

Two random variables X and Y are said to be independent, denoted as X _L Y if any of
the following equivalent condition hold for all x, y :

1
PX=2Y=y)=PX=z)P(Y =y)
2.
PX=z|]Y =y)=P(X ==2)
3.

PY=ylX=2z)=PY =y)

Q17: Define conditional independence

Two random variables X and Y are said to be conditionally independent given random
variable Z, denoted as X | Y |Zifforall z,y, z:

PX=2Y=ylZ=2=PX=z|Z=2)PY =y|Z =2)

Q18: Identically independently distributed (11D)

The random variables (RVs) X7, X5, ..., X,, are identically independently distributed if
they are mutually independent X; | Xj and have the same probability distributions

PXl(xz) = ij(.’L'])

Q19: Expectation of a function of a random variable

The expectation of a function g(X) of a discrete random variable X is defined as:

Exlg(X)] = 3 P(X = 2)g(x)

TEZ

The expectation of a function g(X) of a continuous random variable X is defined as:

Ex[g(X)] = / Ix(@)g(e)ds

Q20: What is the difference between sample mean and expectation

Sample mean of n samples is

,u,(Xl,...,Xn):—ZXZ-

Expectation of a discrete random variable is

Ex[X] =) PX =z

zeQx
Sample mean converges to the expectation when 1 with high probability:

lim N’(Xla s aXn) = EX[X]

n—oo

Q21: Define variance of a function of a random variable

The expectation of a function g(X) of a random variable X is given by

Vx[g(X)] = Ex (9(X) — Ex[g(X)])’]

Q22: Define a covariance matrix

For random vector X = [X7, X5, ..., X,,], the covariance matrix of X is defined as:

Vx[X] = Ex [(X — Ex[X]) (X — Ex[X])"]

Q23:

Given the dataset D = {(x1,41),- - -, (Xn,Yn)}, a model g, = f(xi;6), and a loss
function I(yi, ¥;), show that the following optimization problem can be interpreted as

maximum likelihood estimation. Tn the process show that for the interpretation, we need the
IID (independently, identically distributed) assumpti the dataset. List any other
assumptions that you need for the fetation.

0" = arg min) | U(y:, f(xi;0))

=1

A23:

Let the x; and y; be random vectors for all 2. Model the probability distribution as a negative
log of the loss function:

P(xi,3:)16) = 5 exp(~ui 7(x:56)).

If the samples are IID, then we can write the probability of the entire dataset as products of
sample probabilities

n

P(D|0) = [P((xi,:)16)

=1

n

P(DI6) = [T Zexp(~ 1w, £(x:).

i=1

A product of exponents is the summation of their powers,
(D|0) _eXp z l yza Xza 0)

Denote

n

L(D;6) =), Ulyi, f(xi;6).

The original optimization problem can be written as:

0" = arg mein L(D;0)

Taking negative exponent on both sides turns the problem into a maximization problem
because exp(—y) is a monotonically decreasing function.

0" = arg max exp(—L(D;0))

This problem is the same as maximizing the likelihood P(D|6), hence maximum likelihood
estimate.

Q24.

Given the dataset D = {(x1,41),- - -, (Xn,Yn)}, amodel gy, = f(x;;6), a regularizer
R(6) and a loss function I(y;, y;), show that the following optimization problem can be
interpreted as maximum-a-posteriori estimation. In the process show that for the
interpretation, we need the IID (independently, identically distributed) assumption over the
dataset. List any other assumptions that you need for the interpretation.

6" = arg min Zl Uy, f(xi50)) + AR(6),

where A is some positive constant that balances between the loss function and the
regularizer.

A24:

Let the x; and y; be random vectors for all 2. Model the probability distribution as a negative
log of the loss function:

P((xt,1)16) = exp(~1(yi, £(x:56)).

If the samples are IID, then we can write the probability of the entire dataset as products of
sample probabilities

P(D|6) = HP((Xi,yz’)I@)

P(D|0) = H 7 exp(—1(yi, f(xi;0)).

A product of exponents is the summation of their powers,

n

P(DI6) = exp(~ > Uy, £(x:56).

i=1

Denote

n

L(D;60) =) Uyi, f(xi6)-
i=1
The original optimization problem can be written as:
0" = arg mgin L(D;0) + AR(0)
Taking negative exponent on both sides turns the problem into a maximization problem
because exp(—y) is @ monotonically decreasing function.
0" = arg max exp(—L(D;0)) exp(—AR(6))

The first term is the same as maximizing the likelihood P(D|#). If we interpret the second
term as a prior:

P(6) = = exp(—AR(9)),

Z
then we can rewrite the original optimization problem as

0" = arg max P(D|0)P(6)

By Bayes theorem P(D|6)P(0) = P(0|D)P(D), hence we can write the optimization
problem as maximizing the posterior

0" = arg max P(6|D)P(D).

We can ignore the evidence term P(D), because it is independent of # the optimization
variable. The original problem reduces to maximizing the posterior, hence maximum a
posteriori:

0" = arg max P(6|D)

Q25: Define L-p norm forp = {1,2,...}

ST

I1xllp = (lz1” + |zaf” + - - + |2,)

Q26: Find the minimum point for the following regularized least square
problem and

w' =arg min [y — Xw|® + Afw]?,
wherew € R", y € R™, X ¢ R™" and A € R"

A26:
Let f(w) = |ly — Xw]|* + Al|w|]®
Write f(w) in terms of inner product,
fw) = (y —Xw) (y — Xw) + Aw'w
Expand and collect the terms,
Fw)=w' (X' X+ AL)w—2y Xw+y'y
Taking the derivative of f(w) we get,

% flw)=2w' (X"X +AI,) — 2y X.

At the maximum point w* the derivative of f(w) is zero,
0
fw)| = O;zr’
ow W
Equating the derivative to zero at w*, we can solve for w*,
2w (XX 4+ AL,) — 2y X =0].
Rearranging we get,

w* = (X'X + L) X'y

Refs:

1. https://github.com/karpathy/micrograd/tree/master/micrograd

2. https://github.com/mattjj/autodidact

3. https://github.com/mattjj/autodidact/blob/master/autograd/numpy/numpy v
from collections import namedtuple

import numpy as np

def unbroadcast(target, g, axis=0):

Op

"""Remove broadcasted dimensions by summing along them.
When computing gradients of a broadcasted value, this is the right thinc
do when computing the total derivative and accounting for cloning.
while np.ndim(g) > np.ndim(target):

g = g.sum(axis=axis)
for axis, size in enumerate(target.shape):

if size == 1:

g = g.sum(axis=axis, keepdims=True)

if np.iscomplexobj(g) and not np.iscomplex(target):

g = g.real()
return g

= namedtuple('Op', ['apply’,

Ivjpl’
‘name',
'nargs'])

Vector Jacobhian Product for addition

f(a,b)=a+Db

where a, b, f € R"

LetI(f(a, b)) € R be the eventual scalar output. We find % and % for Vector Jacobian

product.
0 ol 0 ol ol
5o ((8:D)) = Zp 5 (@t D) = G (T + Onn) = 5
Similarly,
0 ol
—I(f = —

def add vjp(dldf, a, b):

dlda = unbroadcast(a, dldf)
dldb = unbroadcast(b, dldf)
return dlda, dldb

add = 0Op(
apply=np.add,
vip=add_vjp,
name="'+",
nargs=2)

VJP for element-wise multiplication
f(aa ﬂ) = af
where o, B, f € R

Let [(f(a, B)) € R be the eventual scalar output. We find g—i and 2L for Vector Jacobian

oB
product.
0 ol 0 ol
%l(f(a,ﬁ)) = 8_]‘%(&5) = O_fﬁ
0 ol 0 ol
2l (f(a,8)) = 5757 (aB) = =7

def mul vjp(dldf, a, b):
dlda = unbroadcast(a, dldf * b)
dldb = unbroadcast(b, dldf * a)
return dlda, dldb

mul = Op(
apply=np.multiply,
vip=mul_vijp,
name="*",
nargs=2)

VJP for matrix-matrix, matrix-vector and vector-vector
multiplication

Case 1: VJP for vector-vector multiplication
f(a,b)=a'b
where f € R, and b,a € R"

LetI(f(a,b)) € R be the eventual scalar output. We find % and % for Vector Jacobian

product.

0 IR
al(f(a,b)) =37 0a (a'b) = afb

Similarly,

| - §
SR P I R [CO N s
3Y T — :
Fle)
33,(2)
\ 9 |5y
oY
C—) \jw\(ﬂ,\
So'c-obu:\m bﬂ _)
39,(2> 29 ()
- J 3
35,00 Ma(y)
BN > Ja
Sa
NEE
A
|
S48

% how \fcfo’\

ol \Qa A=
o) ?
ok

LL) S vy
-
o,
b N _{¥
;_6;%(Qf 5_{:’25{'
R -
9 [y M_l 67_ 2
59\‘\/ -SI i }QW\ :’ - é)g
o |

: \C)'
Q ~ _/ IX!
[L-&MJ x'y €IR

My My W] FEER
- %, ég\ 3T Y.

“ Moy - 3ADS

Case 2: VJP for matrix-vector multiplication

Let

f(A,b) = Ab

where f € R™, b € R", and A € R™*"

Let [(f(A, b)) € R be the eventual scalar output. We want to findfind

Vector Jacobian product.

Let
ail ai2
a1 a2
A =
aml am2

, where each a] € R™™ and a;; € R.

Define matrix derivative of scalar to be:

- Ol ol
Oaiy Oaiz
ol ol
6l . Oas Oayy
0A
ol ol
L 8aml aa/m2
0
—I(f(a,b
Note that
_ a;l’ -
ay
Ab=|
| am |

ain

a2n

Amn

ol A
8aln

ol
8a2n

ol
Oamn

ol 0
= ¢ oA AP)

I
a; b

-
a, b

[amb _

o
0A

- ﬂ -
6&1

ol
63,2

ol

8am .

ol
and 5 for

Since aZ.Tb is a scalar, it is easier to find its derivative with respect to the matrix A.

—a/b=

OA

Let

ol

i

Then

ol 0 ol
o0 Tty [a
of OA i [Wl

Returning to our original quest for

ol 0

0
8_Al(f(A’ b)) = F A

Note that
- Ol 1. T 7
9P

ol 1. T
a—ﬁb

Oyt

0fm

o
0f

ol

~ of 0A

oL
Of:

6a2b
Oay

8ajb
Oay

Ha'b
Oa;

da b

Oam

0

- o
of
ol
0fs

L
0fs

_ 07__
0,
— b:T E Rmxn
OT
oL
Ofm]

_ OT'_

0,
ol :| 8l bT 1xn
Ofm b’ of;

| 0,]

-0l 8 [Ol 1T 7
ra; b b o7 P
T o o0 _T ol 1. T
a?'b _ E%'Eiiﬂi2 5};t)
anb o0 Ty oLy T
B - L of oA “™ | Bfn
ar\ "

b'=(—) b’

(%)

ol

Ofm

We can group the terms inside a single transpose.

Which results in

Sl b) = (v g;)

The derivative with respect to b is simpler:

0 ol o ol

Ob ap (H(AD) = Of b b AP = of i

Case 3: VJP for matrix-matrix multiplication
Let

F(A,B) = AB
where F € R™? B € R™ P, and A € R™*"

Let [(F(A,B)) € R be the eventual scalar output. We want to find a_A and —- for Vector

Jacobian product.

Note that a matrix-matrix multiplication can be written in terms horizontal stacking of matrix-
vector multiplications. Specifically, write F' and B in terms of their column vectors:

=[b1 by ... by]
F=[fi & ... £].
Then for all 2
f; = Ab;
From the VJP of matrix-vector multiplication, we can write

al o ol o\
L OA T BE 6A(Ab) <bi8_fi) cR

and for all i # j

ol
Ab Omxn
Bf O0A ()=
Instead of writing I(F'), we can also write I(f, f5, . .., f,), then by chain rule of functions
with multiple arguments, we have,
0 0 ol 0f; ol 0Ofy ol of,

i (F(AB)) = —lf b, 6p) =

A of, oA | of oA T L oA

d o\ " o\ " o\ "
—_I(F(A,B)) = (b — by oot (b, —
g (F(A.B)) (laf1> +(2af2> " +(’”8fp>

ol ol oL\ "
= bj— +by— + -+ b,
(Vor, 2 of P 8fp>

It turns out that some of outer products can be compactly written as matrix-matrix
multiplication: $$ \bfb_1\frac{\p [}\p \bff_1}

« \bfb_2\frac{\p I{\p \bff_2}
« \dots
o \bfb_p\frac{\p I}{\p \bff_p}=

[(bi by ... by]

ol
of1
o
ofy

Gl
of,

= \bfB \left(\frac{\p [}{\p \bfF}\right)\top$$

Hence,

0 ol
—I(F(A,B)) = —B'
The vector Jacobian product for B can be found by applying the above rule to
F2(A,C) =F ' (A,B)=B"A" =CA " whereC=B and F; = F .

0 ol

—I(F2(A,QC)) = A
80 (2(Y)) 8F2
Take transpose of both sides
O iFya0p=ar-L
aC oF,

Put back, C = B' and Fy = FT,

I(F(A,B)) = A" —

def matmul_vjp(dldF, A, B):
G = dldF
if G.ndim ==
Case 1: vector-vector multiplication
assert A.ndim == 1 and B.ndim ==

dldA = G*B

dldB = G*A

return (unbroadcast(A, dldA),
unbroadcast(B, dldB))

assert not (A.ndim == 1 and B.ndim == 1)

1. If both arguments are 2-D they are multiplied like conventional mat
2. If either argument is N-D, N > 2, it is treated as a stack of matri
residing in the last two indexes and broadcast accordingly.
if A.ndim >= 2 and B.ndim >= 2:
dldA = G @ B.swapaxes(-2, -1)
dldB = A.swapaxes(-2, -1) @ G
if A.ndim == 1:
3. If the first argument is 1-D, it is promoted to a matrix by pre
1 to its dimensions. After matrix multiplication the prepended
A = A[np.newaxis, :]
G G[np.newaxis, :]
dldA = G @ B.swapaxes(-2, -1)
dldB = A .swapaxes(-2, -1) @ G_ # outer product

elif B.ndim ==
4. If the second argument is 1-D, it is promoted to a matrix by ar
a 1 to its dimensions. After matrix multiplication the appendec
B = B[:, np.newaxis]

G = G[:, np.newaxis]
dldA = G_ @ B _.swapaxes(-2, -1) # outer product
dldB = A.swapaxes(-2, -1) @ G
return (unbroadcast(A, dldA),
unbroadcast(B, dldB))

matmul = Op(
apply=np.matmul,
vip=matmul vjp,
name='@"',
nargs=2)

def exp_vjp(dldf, x):

dldx = dldf * np.exp(x)

return (unbroadcast(x, dldx),)
exp = 0p(

apply=np.exp,

vip=exp_vjp,

name='exp",

nargs=1)

def log vjp(dldf, x):

dldx = dldf / x

return (unbroadcast(x, dldx),)
log = Op(

apply=np.1log,

vip=log vip,

name='1log"',

nargs=1)

def sum vjp(dldf, x, axis=None, **kwargs):
if axis is not None:
dldx = np.expand dims(dldf, axis=axis) * np.ones like(x)
else:
dldx = dldf * np.ones like(x)
return (unbroadcast(x, dldx),)

sum_ = Op(
apply=np.sum,
vip=sum_vjp,
name='sum',
nargs=1)

def maximum_vjp(dldf, a, b):
dlda = dldf * np.where(a > b, 1, 0)
dldb = dldf * np.where(a > b, 0, 1)
return unbroadcast(a, dlda), unbroadcast(b, dldb)

maximum = O0p(
apply=np.maximum,
Vjp=maximum vijp,
name='maximum',

nargs=2)
NoOp = Op(apply=None, name='"', vjp=None, nargs=0)
class Tensor:

__array priority = 100

def init (self, value, grad=None, parents=(), op=NoOp, kwargs={}, rec
self.value = np.asarray(value)
self.grad = grad
self.parents = parents
self.op = op
self.kwargs = kwargs
self.requires grad = requires grad

shape = property(lambda self: self.value.shape)
ndim = property(lambda self: self.value.ndim)
size = property(lambda self: self.value.size)
dtype = property(lambda self: self.value.dtype)

def add (self, other):
cls = type(self)
other = other if isinstance(other, cls) else cls(other)
return cls(add.apply(self.value, other.value),
parents=(self, other),
op=add)
__radd = add

def mul (self, other):
cls = type(self)
other = other if isinstance(other, cls) else cls(other)
return cls(mul.apply(self.value, other.value),
parents=(self, other),
op=mul)
~rmul = mul

def

def

def

def

def

def

def

def

def

def

def

__matmul (self, other):
cls = type(self)
other = other if isinstance(other, cls) else cls(other)
return cls(matmul.apply(self.value, other.value),
parents=(self, other),
op=matmul)

exp(self):

cls = type(self)

return cls(exp.apply(self.value),
parents=(self,),
op=exp)

log(self):

cls = type(self)

return cls(log.apply(self.value),
parents=(self,),
op=Llog)

__pow__ (self, other):

cls = type(self)

other = other if isinstance(other, cls) else cls(other)
return (self.log() * other).exp()

__div_ (self, other):
return self * (other**(-1))

__sub__ (self, other):
return self + (other * (-1))

~_neg_ (self):
return self*(-1)

sum(self, axis=None):

cls = type(self)

return cls(sum .apply(self.value, axis=axis),
parents=(self,),
op=sum_,
kwargs=dict(axis=axis))

maximum(self, other):
cls = type(self)
other = other if isinstance(other, cls) else cls(other)
return cls(maximum.apply(self.value, other.value),
parents=(self, other),
op=maximum)

__repr__ (self):

cls = type(self)

return f"{cls. name }(value={self.value}, op={self.op.name})" if ¢
#return f"{cls. name }(value={self.value}, parents={self.parents},

backward(self, grad):
self.grad = grad if self.grad is None else (self.grad+grad)
if self.requires grad and self.parents:

p vals = [p.value for p in self.parents]

assert len(p vals) == self.op.nargs

p _grads = self.op.vjp(grad, *p vals, **self.kwargs)

for p, g in zip(self.parents, p grads):
p.backward(g)

Tensor([1, 2]).sum()

Tensor(value=3, op=sum)

try:

from graphviz import Digraph

except ImportError as e:

def

def

import subprocess
subprocess.call("pip install --user graphviz".split())

trace(root):
nodes, edges = set(), set()
def build(v):
if v not in nodes:
nodes.add(v)
for p in v.parents:
edges.add((p, v))
build(p)
build(root)
return nodes, edges

draw dot(root, format='svg', rankdir='LR'):

format: png | svg |

rankdir: TB (top to bottom graph) | LR (left to right)

assert rankdir in ['LR', 'TB']

nodes, edges = trace(root)

dot = Digraph(format=format, graph attr={'rankdir': rankdir}) #, node at

for n in nodes:
vstr = np.array2string(np.asarray(n.value), precision=4)
gradstr= np.array2string(np.asarray(n.grad), precision=4)
dot.node(name=str(id(n)), label = f"{{v={vstr} | g={gradstr}}}", she
if n.parents:
dot.node(name=str(id(n)) + n.op.name, label=n.op.name)
dot.edge(str(id(n)) + n.op.name, str(id(n)))

for nl, n2 in edges:
dot.edge(str(id(nl)), str(id(n2)) + n2.op.name)

return dot

very simple example

= Tensor([[1.0, 2.01,

[2.0, -1.011])
(x * 2 = 1).maximum(0) .sum(axis=-1)

draw dot(y)

y.backward(np.ones like(y))
draw dot(y)

v=[[1.2][2.-1]] | g=[[2.02.0][2.0 0.0]]

def

def

def

XT =

out

out.

Vv=IL.313.0.1] | g=I[1.0 1.0] [1.0 1.0]]

v=[[2.4][4.-2]] | g=[[1.0 1.0][1.00.01]

f np(x):
b =1[1, 0]
return (x @ b)*np.exp((-x*x).sum(axis=-1))

f T(x):
b=1[1, 0]
return (x @ b)*(-x*x).sum(axis=-1).exp()

grad f(x):

XT = Tensor(x)

y = f T(xT)

y.backward(np.ones like(y.value))
return xT.grad

Tensor([1, 21)
= f T(xT)
backward(1)

print(xT.grad)
draw dot(out)

[-0.

v=[12]

def

v=0.0067 | g=1
e

00673795 -0.02695179]

numerical jacobian(f, x, h=le-10):
n = x.shape[-1]
eye = np.eye(n)
x_ plus dx = x + h * eye # n x n
num_jac = (f(x plus dx) - f(x)) / h # limit definition of the formula #
if num jac.ndim >= 2:
num_jac = num_jac.swapaxes(-1, =2) # m x n
return num_ jac

Compare our grad f with numerical gradient

def

check numerical jacobian(f, jac f, nD=2, **kwargs):

X = np.random.rand(nD)

print(x)

num_jac = numerical jacobian(f, x, **kwargs)

print(num jac)

print(jac_f(x))

return np.allclose(num jac, jac f(x), atol=le-06, rtol=le-4) # m x n

Throw error if grad f is wrong
assert check numerical jacobian(f np, grad f)

[0.4717993 0.90549333]

[0.19560853 -0.30124125]
[0.19560835 -0.30124165]

