Natual Lansuage processing
\rightarrow Machine translation
L Peuts of spaecch tagsins
${\dot{\text { Rule }} \rightarrow \boldsymbol{x}_{r}}$
\rightarrow Generating missms worids
Understons $\underbrace{\text { lunguage }}_{1}$ Cs Autacomplete
vectors
 or. a seauence

word ding v_{1}, v_{2}, v_{3}

$$
\begin{aligned}
& \left.a\left(\underline{x}_{n}, \underline{x}_{m}\right) \in[0,1] \quad \forall n \in(1, W) \text { cnal } m \in \int 1, N\right] \\
& \sum_{m=1}^{N} a\left(\underline{x}_{n}, x_{n}\right)=1
\end{aligned}
$$

insput

$$
a\left(\underline{x}_{n}, \underline{x}_{m}\right)
$$

$\operatorname{value}_{\text {veto }} \quad \underline{v}_{n}=\underline{\Omega}_{v} x_{n}+\underline{\beta}_{v}$
for each word m the sentence

$$
\forall n \in[1, N]
$$

$$
\left.\begin{array}{ll}
k_{c y} & \underline{k}_{n}=\Omega_{-} \underline{x}_{n}+\underline{\beta}_{k} \\
\text { vedor } \\
\text { query } \\
\text { vector }
\end{array} \quad \underline{q}_{n}=\Omega_{q} \underline{x}_{n}+\underline{\beta}_{q}\right]
$$

$$
a\left(\underline{x}_{n}, \underline{x}_{n}\right)=\operatorname{soft}_{m a x}\left(k_{m}^{\top} \underline{k}_{n}^{\top}\right)
$$

output input

$$
=\frac{\exp \left(\underline{k}_{m}^{\top} \underline{q}_{n}\right)}{\sum_{m=1}^{N} \exp \left(\underline{k}_{m}^{\top} \underline{q}_{n}\right)}
$$

$$
\underbrace{\operatorname{sa}\left(\underline{x}_{n}\right)=\sum_{m=1}^{N} \underbrace{\text { soft } \max _{m}\left(\underline{k}_{m}^{+} q_{n}\right) v_{m}}_{m})}_{\in \mathbb{R}}
$$

$$
v_{m}=\Omega_{v} x_{m}+\beta_{v}
$$

 quiry is a new kcy that yow wount to seach in thi dabise

Scaled Dot product selfaltention

$$
\left.\begin{array}{c}
\operatorname{Sa}[x]=V[x] \text { Soft } \max \left(K(x)^{\top} Q(x)\right) \\
\operatorname{Van}(K(x))_{D \times N}=1 \\
\operatorname{Var}\left(Q(x)_{D \times N}\right)=1
\end{array}\right] \begin{gathered}
\operatorname{Var}\left(K(x)^{\top} Q(x)\right. \\
=D
\end{gathered}
$$

$$
S_{a}[x]=V[\dot{x}] \operatorname{softmax} \frac{\left(K(x)^{\top} Q(x)\right)}{\sqrt{D}}
$$

The sentence) The woman ate the raccooth has a quite different meaning to
-'The raccoon ate the woman.
x_{1} for the
x_{2} for Raccom

$$
\begin{aligned}
& P E_{(p O S, 2 i)}=\sin \left(\text { pos } / 10000^{2 i / D^{\prime}}\right) \\
& P E(p o s, 2 i+1)=\cos \left(p O s /\left(10000^{2 i+1} / D^{\prime}\right)\right.
\end{aligned}
$$

Scaled dot product self-attention

Transformer Layer

Layer Norm
Betioh Norm $\left(x_{n}\right)=\frac{x_{n}-\mu}{\sigma}$

$$
\mu=\frac{1}{B} \sum_{b=1} \underline{x}_{b} \quad r^{2}=\frac{1}{B} \sum\left(x_{b}-\mu\right)^{2} \quad x_{1}, x_{2}, x_{3} \ldots x_{B}
$$

Layer Nom
the mean and variana are computed over the "channel" dimension
a) Lear layer

$$
\underline{h}_{l}=\iint_{\substack{x \\ \text { Hold } \\ \text { undo } \\ \text { una }}}
$$

b) Conc layer

c)
NLP os Sa

Channels $=N=$ nurtber of wond m the sentence

