$$
f(\underline{a}, \underline{b})=\frac{1}{1+\exp \left(-\underline{a}^{\top} \underline{b}\right)} \quad \underline{\underline{a}} \in \mathbb{R}^{n} \quad \underline{b} \in \mathbb{R}^{n} \quad f \in \mathbb{R}
$$

Vector Jacabion Product.

$$
\begin{align*}
& \frac{\partial l}{\partial g}= \tag{Q}\\
& \frac{\partial l}{\partial b}= \\
& \text { (a) (b) } \\
& \int_{d x}^{d} \frac{1}{x}=? \Rightarrow \frac{d x^{-1}}{d x}=-1(x)^{-1-1}=-x^{-2}=\frac{-1}{x^{2}} \\
& \frac{d}{d x} \exp (x)=3=\exp (x) \\
& \frac{\partial}{\partial \underline{a}} \underline{a}^{\top} \underline{b}=\underline{b}^{\top} \text { and } \frac{\partial}{\partial b} \underline{a}^{\top} \underline{b}=\underline{a}^{\top} \\
& \frac{\partial l}{\partial \underline{a}}=\frac{\partial l}{\partial f}\left(\frac{-1}{\left(1+\exp \left(-a^{\top} \underline{b}\right)\right)^{2}}\right)\left(\exp \left(-\underline{\underline{a}}^{+} \underline{b}\right)\right) \frac{\partial}{\partial \underline{a}}\left(-\underline{a}^{\top} \underline{b}\right) \\
& =\frac{\partial l}{\partial f} \quad \frac{b^{\top} \exp \left(-\underline{a}^{\top} b\right)}{\left(1+\exp \left(-\underline{a}^{\top} \underline{b}\right)\right)^{2}}
\end{align*}
$$

$\frac{\partial \ell}{\partial \underline{b}}$

1. Data Input data \longrightarrow out put

SUPERVISED Leannim labels
A. Example: Handwritten digit images and corresponding label $\%$ S alt
B. Example: Road density and Salt concentration
C. Example: $X-Y$ coordinate of poistcloud and corresponding Z coordinate
2. Models Input function, Predicted $上$ labe

A Example: Anear model Equation on moor feme Model
B. Example: Multi Layer perceptron: Two Linear models sandwiching a non-linear

3. Learning

Data as Vectors
B. Example: Gradient descent.

Let us consider the problem of identifying the digit from handwritten images based on data. This is called a supervised learning problem, where have a label y_{i} (the digit) associated with each example \mathbf{x}_{i} (the handwritten image). The label y_{i} has various other names, including target, response variable and annotation. A dataset is written as a set of example- label pairs $\left\{\left(\mathbf{x}_{1}^{\prime}, y_{1} \in \mathbb{R}, \ldots,\left(\mathbf{x}_{i}, y_{i}\right), \ldots,\left(\mathbf{x}_{n}, y_{n}\right)\right\}\right.$. The features $\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}\right\}$ are often concatenated andwhternas a big matrix $\mathbf{X} \in \mathbb{R}^{n \times d}$ and the labels $\mathbf{y} \in \mathbb{R}^{n}$

Models as functions

Once we have data in an appropriate vector representation, we can get to the business of Row ut constructing a predictive function (known as a predictor).

$$
\begin{aligned}
& \text { of white } \\
& \text { A. Example: Linear Model: } f(\mathbf{x})={ }^{\top} \mathbf{x}+w_{0} \\
& f(\underline{x})=m x+c \\
& =\frac{w}{w_{1} x_{1}}+w_{2} x_{2}+\ldots+w_{n} x_{n}+w_{0} \\
& \text { feature sect or }
\end{aligned}
$$

$M L P$

$$
\begin{aligned}
& f(\underline{x})=\underline{w}_{2}^{\top} a^{\top}\left(\underline{w_{1}} \underline{c}+\underline{w}_{0}\right)+w_{20} \\
& \text { Partivation function } \\
& \text { inMLP }=\left\{\underline{w}_{2}, w_{20}, \underline{w}_{1}, \underline{w_{0}}\right\}
\end{aligned}
$$

Linear $f(x)=\underline{w}^{\top} x+\omega$. model

$$
\text { Paramiter }=\{\underline{w}, w,\}
$$

3-Layer Perceptron on 3-Laser N.

$$
\begin{aligned}
& f(\underline{x})=w_{3}^{\top} a_{2}\left(w_{2} a_{1}\left(w_{1} \underline{x}+\underline{w_{1}}\right)+\underline{w}_{2}\right)+w_{30} \\
& \text { Porameters }=\left\{\underline{w}_{3}, w_{2}, w_{1}, \underline{w}_{1}, \underline{w}_{2}, w_{30}\right\}
\end{aligned}
$$

Learning:
while (not coverged):

$$
\begin{aligned}
& \text { Parametiers }_{t+1}=\text { Paramelerst }-\alpha \frac{\partial l}{\partial P_{t a r a m a t e r}} \\
& f\left(\frac{\dot{x}}{\uparrow} ; \frac{\theta}{\uparrow}\right)^{\text {Purameters }} \begin{array}{l}
\text { input } \\
\text { (weignts } \\
\text { and biases) }
\end{array}
\end{aligned}
$$

(1) $\operatorname{Data}\left\{\left(\underline{x}_{i}, y_{i}\right) \cdots\left(\underline{x}_{n}, y_{n}\right)\right\}$
(2) Model -
(3) Learning
\rightarrow Gradient Descent
Ls Loss function
Model: $f(\underline{x} ; \underline{\theta})$

$$
\begin{array}{ll}
& \hat{y}_{i}=f(\underline{z} \\
\text { notation } \\
\text { for } \\
\text { predicted }
\end{array} \quad \hat{y}_{i} \approx y_{i}
$$

$$
\begin{aligned}
& \hat{y}_{i}=f\left(x_{i} ; m, c\right) \\
& \hat{y}_{i}=m x_{i}+c
\end{aligned}
$$

labe
Loss function $\ell\left(y_{i}, \hat{y}_{i}\right)=\left(y_{i}-\hat{y}_{i}\right)^{2}=(y_{i}-\underbrace{\left(m x_{i}+c\right)}_{\hat{y}_{i}})^{2}$
Thresholded LI loss

$$
\begin{aligned}
\hat{y}_{i} & =f\left(\underline{x}_{i j} \underline{w}\right)=\operatorname{sign}\left(\underline{w}^{\top} \underline{x}_{i}+w_{0}\right) \\
& \hat{y}_{i} \in\{-1,+1\} \\
\ell\left(y_{i}, \hat{g}_{i}\right)= & \left\{\begin{array}{c}
0 \quad \dot{j} y_{i}=\hat{y}_{i} \\
\mid \underbrace{\underline{w}^{\top} x_{i}+\omega_{0} \mid}_{a b_{s}} \text { y } y_{i} \neq \hat{y}_{i}
\end{array}\right.
\end{aligned}
$$

The learning problem in general is formulated as an optunnation problem

$$
\begin{aligned}
& \theta^{\star}=\arg \min r_{\operatorname{cmp}}\left(f,\left\{\left(\underline{x}_{1}, y_{1}\right), \ldots\left(x_{n}, y_{n}\right)\right\}\right) \\
& \underbrace{r_{\text {emp }}(f, \ldots)}=\frac{1}{n} \sum_{i=1}^{n} l\left(y_{i}, \hat{y}_{i}\right) \quad\left\{\begin{array}{l}
\left(\underline{x}_{i}, y_{i}\right) \\
\text { being } \\
\text { identically }
\end{array}\right. \\
& \text { independently } \\
& \text { distributed. } \\
& \text { (i.i,d.) }
\end{aligned}
$$

