\[
\vect(F(\bfx)) \sim \GP(\vect(\bfM_0(.)), \bfK_0(.,.))
\]
Decoupled GPs: Learn each element of \(F(\bfx)\) independently:
\[
\bfK_0(\bfx, \bfx') = \diag([\kappa(\bfx, \bfx'), \dots ])
\]
No correlation across dimensions, training data still correlated.
Corregionalization models: Alvarez et al (FTML 2012):
\[
\bfK_0(\bfx, \bfx') = \kappa(\bfx, \bfx') \boldsymbol{\Sigma}
\]
\(\Sigma \in \R^{n(1+m) \times (1+m)n}\) has too many parameters to learn
Matrix Variate Gaussian: Inspired from Sun et al (AISTATS 2017)
\[
F \sim \mathcal{MVG}(\bfM, \bfA, \bfB) \Leftrightarrow
\vect(F) \sim \calN(\vect(M), \bfB \otimes \bfA)
\]
\[
\bfK_0(\bfx, \bfx') = \bfB_0(\bfx, \bfx') \otimes \bfA
\]
Factorization assumption:
\[
\vect(F(\bfx)) \sim \GP(\vect(\bfM_0(.)), \bfB_0(.,.) \otimes \bfA)
\]